(2015) 'E cacy of indoor residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian communities with high usage of long-lasting insecticidal mosquito nets : a cluster-randomised controlled trial.', The lancet., 385 (9976). pp. 1436-1446. Further information on publisher's website:http://dx.doi.org/10.1016/S0140-6736(14)61007-2 Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in The Lancet. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be re ected in this document. Changes may have been made to this work since it was submitted for publication. A de nitive version was subsequently published in The Lancet, 385, 9976, 11 17 April 2015, 10.101661007-2.Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
BackgroundMalaria vector control is threatened by resistance to pyrethroids, the only class of insecticides used for treating bed nets. The second major vector control method is indoor residual spraying with pyrethroids or the organochloride DDT. However, resistance to pyrethroids frequently confers resistance to DDT. Therefore, alternative insecticides are urgently needed.Methodology/Principal FindingsInsecticide resistance and the efficacy of indoor residual spraying with different insecticides was determined in a Gambian village. Resistance of local vectors to pyrethroids and DDT was high (31% and 46% mortality, respectively) while resistance to bendiocarb and pirimiphos methyl was low (88% and 100% mortality, respectively). The vectors were predominantly Anopheles gambiae s.s. with 94% of them having the putative resistant genotype kdr 1014F. Four groups of eight residential compounds were each sprayed with either (1) bendiocarb, a carbamate, (2) DDT, an organochlorine, (3) microencapsulated pirimiphos methyl, an organophosphate, or (4) left unsprayed. All insecticides tested showed high residual activity up to five months after application. Mosquito house entry, estimated by light traps, was similar in all houses with metal roofs, but was significantly less in IRS houses with thatched roofs (p=0.02). Residents participating in focus group discussions indicated that IRS was considered a necessary nuisance and also may decrease the use of long-lasting insecticidal nets.Conclusion/SignificanceBendiocarb and microencapsulated pirimiphos methyl are viable alternatives for indoor residual spraying where resistance to pyrethroids and DDT is high and may assist in the management of pyrethroid resistance.
BackgroundMalaria is commonly associated with poverty. Macro-level estimates show strong links between malaria and poverty, and increasing evidence suggests that the causal link between malaria and poverty runs in both directions. However, micro-level (household and population) analyses on the linkages between malaria and poverty have often produced mixed results.MethodsThe Gambia Malaria Indicator Survey (MIS) 2010/11 was carried out between November 2010 and January 2011. Laboratory-confirmed malaria and wealth quintiles were used to assess the association of socio-economic status and malaria infection in children and the general population. Simple and multiple logistic regressions and survey data analysis procedures, including linearized standard errors to account for cluster sampling and unequal selection probabilities were applied.ResultsChildren (six to 59 months) from the second, third, fourth and richest quintiles were significantly less likely to have malaria compared to children from the poorest quintiles. Children (five to 14 years) from the fourth and richest quintiles were also significantly less likely to have malaria compared to those from the poorest quintiles. The malaria burden has shifted from the under-five children (six to 59 months) to children aged five to 14 years. Malaria prevalence was significantly higher in the Central River Region compared to the Upper River Region; and males bear the malaria brunt more than females. Children (six to 59 months) and children (five to 14 years) living in houses with poor walls, floors, roofs and windows were significant associated with higher prevalence of malaria. However, in the general population, only poor wall housing materials were associated with higher prevalence of malaria.ConclusionsInvestments in strategies that address socio-economic disparities and improvements in the quality of housing could, in the long term, significantly reduce the malaria burden in the poorest communities.
Background: Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated.
BackgroundRecently, there has been mounting interest in scaling-up vector control against malaria in Africa. It needs to be determined if indoor residual spraying (IRS with DDT) will provide significant marginal protection against malaria over current best practice of long-lasting insecticidal nets (LLINs) and prompt treatment in a controlled trial, given that DDT is currently the most persistent insecticide for IRS.MethodsA 2 armed cluster-randomised controlled trial will be conducted to assess whether DDT IRS and LLINs combined provide better protection against clinical malaria in children than LLINs alone in rural Gambia. Each cluster will be a village, or a group of small adjacent villages; all clusters will receive LLINs and half will receive IRS in addition. Study children, aged 6 months to 13 years, will be enrolled from all clusters and followed for clinical malaria using passive case detection to estimate malaria incidence for 2 malaria transmission seasons in 2010 and 2011. This will be the primary endpoint. Exposure to malaria parasites will be assessed using light and exit traps followed by detection of Anopheles gambiae species and sporozoite infection. Study children will be surveyed at the end of each transmission season to estimate the prevalence of Plasmodium falciparum infection and the prevalence of anaemia.DiscussionPractical issues concerning intervention implementation, as well as the potential benefits and risks of the study, are discussed.Trial RegistrationISRCTN01738840 - Spraying And Nets Towards malaria Elimination (SANTE)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.