Asiatic citrus canker is a major disease worldwide, and its causal agent, Xanthomonas citri pv. citri, is listed as a quarantine organism in many countries. Analysis of the molecular epidemiology of this bacterium is hindered by a lack of molecular typing techniques suitable for surveillance and outbreak investigation. We report a comparative evaluation of three typing techniques, amplified fragment length polymorphism (AFLP) analysis, insertion sequence ligation-mediated PCR (IS-LM-PCR) typing, and multilocus variable-number tandem-repeat analysis (MLVA), with 234 strains originating from Asia, the likely center of origin of the pathogen, and reference strains of pathotypes A, A*, and A w , which differ in host range. The typing techniques were congruent in describing the diversity of this strain collection, suggesting that the evolution pattern of the bacterium may be clonal. Based on a hierarchical analysis of molecular variance, the AFLP method best described the genetic variation found among pathotypes whereas MLVA best described the variation found among individual strains from the same countries or groups of neighboring countries. IS-LM-PCR data suggested that the transposition of insertion sequences in the genome of X. citri pv. citri occurs rarely enough not to disturb the phylogenetic signal. This technique may be useful for the global surveillance of nonepidemiologically related strains. Although pathological characteristics of strains could be most often predicted from genotyping data, we report the occurrence in the Indian peninsula of strains genetically related to pathotype A* strains but with a host range similar to that of pathotype A, which makes the classification of this bacterium even more complicated.
We have used amplified fragment length polymorphism (AFLP), multilocus sequence analysis (MLSA) and DNA-DNA hybridization for genotypic classification of Xanthomonas pathovars associated with the plant family Anacardiaceae. AFLP and MLSA results showed congruent phylogenetic relationships of the pathovar mangiferaeindicae (responsible for mango bacterial canker) with strains of Xanthomonas axonopodis subgroup 9.5. This subgroup includes X. axonopodis pv. citri (synonym Xanthomonas citri). Similarly, the pathovar anacardii, which causes cashew bacterial spot in Brazil, was included in X. axonopodis subgroup 9.6 (synonym Xanthomonas fuscans). Based on the thermal stability of DNA reassociation, consistent with the AFLP and MLSA data, the two pathovars share a level of similarity consistent with their being members of the same species. The recent proposal to elevate X. axonopodis pv. citri to species level as X. citri is supported by our data. Therefore, the causal agents of mango bacterial canker and cashew bacterial spot should be classified as pathovars of X. citri, namely X. citri pv. mangiferaeindicae (pathotype strain CFBP 1716) and X. citri pv. anacardii (pathotype strain CFBP 2913), respectively. Xanthomonas fuscans should be considered to be a later heterotypic synonym of Xanthomonas citri.
INTRODUCTIONThe classification of some phytopathogenic bacterial species was initially based on host specialization, although this was evidently not sound taxonomically (Dowson, 1939;Stolp et al., 1965). Nevertheless, plant pathologists and phytosanitary policy regulators required names for plant-pathogenic bacteria that clearly reflected their pathogenic ability. This led to the development of the pathovar classification at an infrasubspecific level (Dye et al., 1980). Furthermore, strains with differential host ranges within a pathovar were sometimes described (e.g. xanthomonads pathogenic to citrus or cassava) and often referred to as pathotypes (Civerolo & Fan, 1982;Verdier et al., 1998).A total of four xanthomonads are pathogenic to plant species within the Rutaceae. Two pathogens that cause spot diseases of citrus (i.e. water-soaked spots turning into flat, necrotic lesions) have been described as two distinct Details of strains and primers, maximum-likelihood trees based on individual sequences and a neighbour-joining tree based on concatenated sequences are available as supplementary material with the online version of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.