We have demonstrated previously by Western blotting that in naturally sensitized humans, the serum or salivary antibody response to Streptococcus mutans was directed predominantly to a protein antigen with a size of approximately 60-kDa. To identify this immunodominant antigen, specific serum antibodies were eluted from immunoblots and five positive clones with inserts ranging in length from 3 to 8 kb from identical chromosomal loci were obtained by screening a genomic expression library of Streptococcus mutans GS-5. Amino acid sequencing established the identity of this immunodominant antigen, a 60-kDa immunodominant glycoprotein (IDG-60), to be a cell wall-associated general stress protein GSP-781, which was originally predicted to have a molecular mass of approximately 45 kDa based on the derived nucleotide sequence. Discrepancy in the molecular mass was also observed in recombinant his-tagged IDG-60 (rIDG-60) expressed from Escherichia coli. Glycosylation, consisting of sialic acid, mannose galactose, and N-acetylgalactosamine, was detected by lectin binding to IDG-60 in cell wall extracts from S. mutans and rIDG-60 expressed in vivo or translated in vitro. Despite the presence of multiple Asn or Ser or Thr glycosylation sites, IDG-60 was resistant to the effect of N-glycosidase F and multiple O-glycosidase molecules but not to -galactosidase. Insertional inactivation of the gene encoding IDG-60, sagA, resulted in a retarded growth rate, destabilization of the cell wall, and pleiomorphic cell shape with multifold ingrowth of cell wall. In addition, distinct from the parental GS-5 strain, the isogenic mutant GS-51 was unable to survive the challenge of low pH and high osmotic pressure or high temperature. Expression of the wild-type gene in trans within GS-51 from plasmid pDL277 complemented the growth defect and restored normal cell shape. These results suggested that IDG-60 is essential for maintaining the integrity of the cell wall and the uniformity of cell shape, both of which are indispensable for bacteria survival under stress conditions.
Brain derived neurotrophic factor (BDNF) has been known to play an important role in various mental disorders or diseases such as Alzheimer's disease (AD). The aim of our study was to assess whether BDNF promoter methylation in peripheral blood was able to predict the risk of AD. A total of 44 AD patients and 62 age- and gender-matched controls were recruited in the current case-control study. Using the bisulphite pyrosequencing technology, we evaluated four CpG sites in the promoter of the BDNF. Our results showed that BDNF methylation was significantly higher in AD cases than in the controls (CpG1: p = 10.021; CpG2: p = 0.002; CpG3: p = 0.007; CpG4: p = 0.005; average methylation: p = 0.004). In addition, BDNF promoter methylation was shown to be significantly correlated with the levels of alkaline phosphatase (ALP), glucose, Lp(a), ApoE and ApoA in males (ALP: r = −0.308, p = 0.042; glucose: r = −0.383, p = 0.010; Lp(a): r = 0.333, p = 0.027; ApoE: r = −0.345, p = 0.032;), ApoA levels in females (r = 0.362, p = 0.033), and C Reactive Protein (CRP) levels in both genders (males: r = −0.373, p = 0.016; females: r = −0.399, p = 0.021). Our work suggested that peripheral BDNF promoter methylation might be a diagnostic marker of AD risk, although its underlying function remains to be elaborated in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.