Investigation in radioactive contaminant removal from aqueous solutions has been considered essential upon unexpected nuclear accidents. In this report, we have successfully prepared Prussian blue analogues (PBAs) with different substituted cations (A2[Fe(CN)6] (A: Cu2+, Co2+, and Ni2+)). The synthesized PBAs were characterized and employed for the removal of Cs+, Sr2+, and Co2+ as sorption models, which are commonly found in radioactive waste. Sorption examinations reveal that Cu2[Fe(CN)6] has the highest sorption capacity towards Cs+, Sr2+, and Co2+ compared with those of Co2[Fe(CN)6] and Ni2[Fe(CN)6]. This is mainly attributed to the cation-exchange ability of substituted metal within the framework of PBAs. The sorption mechanism is qualitatively and quantitatively supported by infrared spectroscopy (IR) and total reflection X-ray fluorescence spectroscopy analysis (TXRF). In addition, it was found that Cs+ is adsorbed most effectively by PBAs due to the size matching between Cs+ ions and the channel windows of PBAs. These findings are important for the design of sorbents with suitable ion-exchange capacity and selectivity toward targeted radioactive wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.