Ultra-deep RNA sequencing (RNA-Seq) has become a powerful approach for genome-wide analysis of pre-mRNA alternative splicing. We previously developed multivariate analysis of transcript splicing (MATS), a statistical method for detecting differential alternative splicing between two RNA-Seq samples. Here we describe a new statistical model and computer program, replicate MATS (rMATS), designed for detection of differential alternative splicing from replicate RNASeq data. rMATS uses a hierarchical model to simultaneously account for sampling uncertainty in individual replicates and variability among replicates. In addition to the analysis of unpaired replicates, rMATS also includes a model specifically designed for paired replicates between sample groups. The hypothesis-testing framework of rMATS is flexible and can assess the statistical significance over any user-defined magnitude of splicing change. The performance of rMATS is evaluated by the analysis of simulated and real RNA-Seq data. rMATS outperformed two existing methods for replicate RNA-Seq data in all simulation settings, and RT-PCR yielded a high validation rate (94%) in an RNA-Seq dataset of prostate cancer cell lines. Our data also provide guiding principles for designing RNA-Seq studies of alternative splicing. We demonstrate that it is essential to incorporate biological replicates in the study design. Of note, pooling RNAs or merging RNA-Seq data from multiple replicates is not an effective approach to account for variability, and the result is particularly sensitive to outliers. The rMATS source code is freely available at rnaseq-mats.sourceforge. net/. As the popularity of RNA-Seq continues to grow, we expect rMATS will be useful for studies of alternative splicing in diverse RNA-Seq projects.RNA sequencing | alternative splicing | exon | isoform | transcriptome A lternative splicing generates tremendous transcriptomic and proteomic complexity in higher eukaryotes (1-4). Changes in alternative splicing underlie gene regulation in diverse biological and disease processes (5-7). However, it has been challenging to globally determine and compare gene splicing profiles among biological states. The RNA sequencing (RNA-Seq) technology has become a powerful tool for quantitative profiling of alternative splicing (3,4,8). Due to the high cost, earlier RNA-Seq studies of alternative splicing typically did not incorporate replicates in the study design (9-12). Nonetheless, it is important to note that biological variability remains a critical issue in high-throughput sequencing studies (13). Furthermore, as the cost of sequencing continues to decline, it has become feasible and increasingly common to carry out RNA-Seq on a large number of samples, with sufficient coverage to quantify alternative splicing in each individual sample. This creates an urgent need for new and robust analytic tools to detect alternative splicing changes from replicate RNA-Seq data.Although a variety of computational methods have been developed for RNA-Seq analysis of alternati...
Alternative splicing is a tightly regulated biological process by which the number of gene products for any given gene can be greatly expanded. Genomic variants in splicing regulatory sequences can disrupt splicing and cause disease. Recent developments in sequencing technologies and computational biology have allowed researchers to investigate alternative splicing at an unprecedented scale and resolution. Population-scale transcriptome studies have revealed many naturally occurring genetic variants that modulate alternative splicing and consequently influence phenotypic variability and disease susceptibility in human populations. Innovations in experimental and computational tools such as massively parallel reporter assays and deep learning have enabled the rapid screening of genomic variants for their causal impacts on splicing. In this review, we describe technological advances that have greatly increased the speed and scale at which discoveries are made about the genetic variation of alternative splicing. We summarize major findings from population transcriptomic studies of alternative splicing and discuss the implications of these findings for human genetics and medicine.
Alternative splicing is a prevalent post-transcriptional process, which is not only important to normal cellular function but is also involved in human diseases. The newly developed second generation sequencing technique provides high-throughput data (RNA-seq data) to study alternative splicing events in different types of cells. Here, we present a computational method, SpliceMap, to detect splice junctions from RNA-seq data. This method does not depend on any existing annotation of gene structures and is capable of finding novel splice junctions with high sensitivity and specificity. It can handle long reads (50–100 nt) and can exploit paired-read information to improve mapping accuracy. Several parameters are included in the output to indicate the reliability of the predicted junction and help filter out false predictions. We applied SpliceMap to analyze 23 million paired 50-nt reads from human brain tissue. The results show at this depth of sequencing, RNA-seq can support reliable detection of splice junctions except for those that are present at very low level. Compared to current methods, SpliceMap can achieve 12% higher sensitivity without sacrificing specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.