Background: Translocator protein (TSPO) has been considered a mitochondrial cholesterol transporter critical for steroid hormone production. TSPO knock-out mice were reported to be embryonic lethal. Results: TSPO knock-out mice are viable with no effects on steroidogenesis. Conclusion: TSPO is not essential for steroidogenesis and is not necessary for sustaining life. Significance: This study rectifies a serious inaccuracy in the current understanding that is critical for treating steroid hormone disorders.
Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism.
Translocator protein (TSPO) is a mitochondrial outer membrane protein of unknown function with high physiological expression in steroidogenic cells. Using TSPO gene-deleted mice, we recently demonstrated that TSPO function is not essential for steroidogenesis. The first link between TSPO and steroidogenesis was established in studies showing modest increases in progesterone production by adrenocortical and Leydig tumor cell lines after treatment with PK11195. To reconcile discrepancies between physiological and pharmacological interpretations of TSPO function, we generated TSPO-knockout MA-10 mouse Leydig tumor cells (MA-10:TspoΔ/Δ) and examined their steroidogenic potential after exposure to either dibutyryl-cAMP or PK11195. Progesterone production in MA-10:TspoΔ/Δ after dibutyryl-cAMP was not different from control MA-10:Tspo+/+ cells, confirming that TSPO function is not essential for steroidogenesis. Interestingly, when treated with increasing concentrations of PK11195, both control MA-10:Tspo+/+ cells and MA-10:TspoΔ/Δ cells responded in a similar dose-dependent manner showing increases in progesterone production. These results show that the pharmacological effect of PK11195 on steroidogenesis is not mediated through TSPO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.