The use of neural stem cells (NSCs) or their progeny oligodendrocyte precursor cells (OPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features during the transition from NSCs to OPCs remain unclear. In the present study, we isolated NSCs from the embryonic rat forebrain and induced them into OPCs by using B104 conditioned medium (B104CM) in vitro. We then employed cDNA array technology to compare changes in gene expression between the two cell populations. Among 1,176 genes examined, 40 were differentially expressed, and some of them may be involved in OPC differentiation from NSCs. Our findings thus provide new insights into the molecular basis of differentiation of OPCs from NSCs.
Post-traumatic inflammation response has been implicated in secondary injury mechanisms after spinal cord injury (SCI). Interleukin-1 (IL-1) is a key inflammatory mediator that is increasingly expressed after SCI. The action of IL-1 is mediated through its functional receptor, type I interleukin-1 receptor (IL-1RI). However, whether this receptor is expressed after SCI remains to be elucidated. In the present study, the temporospatial expression of IL-1RI was detected in rats that received a moderate contusive SCI (a 10 g rod dropped at a height of 12.5 mm) at the ninth to tenth thoracic vertebral level using a widely used New York University impact device. Our study demonstrated that IL-1RI was slightly increased at 4 h post-injury compared to the normal or sham-operated controls, reached the peak at 8 h at mRNA level (4.44-fold, P<0.01) and 1 d at protein level (2.62-fold, P<0.01). IL-1RI remained at its elevated levels for a relatively long duration (4 h-7 days). Spatially, IL-1RI was observed throughout the entire length of a 10 mm-long cord segment containing the injury epicenter. Colocalization of IL-1RI was found in neurons, oligodendrocytes, astrocytes, and activated microglia. Our results suggest that the elevated expression of IL-1RI after SCI may contribute to posttraumatic inflammation responses of IL-1.
BackgroundA long-term existing schistosome infection can aid in maintaining immuno-homeostasis, thus providing protection against various types of autoimmune diseases to the infected host. Such benefits have often been associated with acute or egg stage infection and with the egg-induced Th2 response. However, since schistosome infection undergoes different stages, each associated with a specific induction of Th responses, the requirements for the ability of the different stages of schistosome infection to protect against autoimmune disease has not been elucidated. The present study was designed to study whether different stages of schistosome infection offer unique protection in collagen-induced arthritis and its mechanisms.ResultsArthritis susceptible strain DBA/1 male mice were infected with Schistosoma japonicum for either 2 weeks resulting in early stage infection or for 7 weeks resulting in acute or egg stage infection. Following Schistosoma japonicum infection, collagen II was administered to induce collagen-induced arthritis, an animal model for human rheumatoid arthritis. Infection by Schistosoma japonicum significantly reduced the severity and the incidence of experimental autoimmune collagen-induced arthritis. However, this beneficial effect can only be provided by a pre-established acute stage of infection but not by a pre-established early stage of the infection. The protection against collagen-induced arthritis correlated with reduced levels of anti-collagen II IgG, especially the subclass of IgG2a. Moreover, in protected mice increased levels of IL-4 were present at the time of collagen II injection together with sustained higher IL-4 levels during the course of arthritis development. In contrast, in unprotected mice minimal levels of IL-4 were present at the initial stage of collagen II challenge together with lack of IL-4 induction following Schistosoma japonicum infection.ConclusionThe protective effect against collagen-induced arthritis provided by Schistosoma japonicum infection is infection stage-dependent. Furthermore, the ability of schistosomiasis to negatively regulate the onset of collagen-induced arthritis is associated with a dominant as well as long-lasting Th2 response at the initiation and development of autoimmune joint and systemic inflammation.
The present study was conducted to investigate whether Ginkgo biloba extract (EGb) 761 could protect spinal cord neurons from H(2)O(2)-induced toxicity. In primary spinal cord neurons isolated from embryonic day 14 rats, H(2)O(2) administration resulted in a significant decrease in the survival of spinal cord neurons. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and Hoechst 33342 nuclear staining showed that these cells die by apoptosis. Such neuronal death, however, was significantly reversed by EGb761 in a dose-dependent manner. Moreover, a marked increase in intracellular free radical generation was found after the H(2)O(2) administration which could be reversed almost completely by EGb761, indicating that inhibition of free radical generation is an important mechanism of the anti-apoptosis action of EGb761. Finally, treatment of cells with H(2)O(2) for 12 h reduced the expression of Bcl-2, an anti-apoptotic gene, by 70% but showed no effect on the level of Bax, a pro-apoptotic gene. EGb76 treatment, however, significantly reversed H(2)O(2)-induced reduction of Bcl-2 expression and inhibited Bax expression by 2.3-fold. Thus, our study provided evidence showing that the protective effect of EGb761 on spinal cord neuronal apoptosis after oxidative stress is mediated, at least in part, by its anti-oxidative action and regulation of apoptosis-related genes Bcl-2 and Bax.
Although dendritic cells (DCs) have been widely demonstrated to play essential roles in initiation of Th2 responses in helminth infections and allergic reactions, the mechanisms remain uncertain largely because DCs do not produce IL-4. In present investigation, we have uncovered a novel subset of DCs from mice infected with Th2-provoking pathogens Schistosoma japonica, which independently promoted Th2 cells via IL-4–dependent pathway. These DCs contained similar levels of IL-4 mRNA and higher levels of IL-12p40 mRNA comparing to basophils, correlating to their Th2-promoting and Th1-promoting dual polarization capacities. Characterized by expression of FcεRI+, these DCs were induced independent of T cells. Further investigations revealed that Th2-promoting FcεRI+ DCs were monocyte-derived inflammatory DCs, which were sufficient to induce Th2 cells in vivo. Egg Ags together with GM-CSF or IL-3 alone were able to stimulate the generation of Th2-promoting FcεRI+ DCs from bone marrow cells in vitro. To our knowledge, our data for the first time demonstrate that IL-4–producing DCs are induced under some Th2-provoking situations, and they should play important roles in initiation of Th2 response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.