Significance We combined ethnographic, archaeological, genetic, and paleoclimatic data to model the dynamics of Central African hunter-gatherer populations over the past 120,000 years. We show, against common assumptions, that their distribution and density are explained by changing environments rather than by a displacement following recent farming expansions, and that they have maintained large population sizes and genetic diversity, despite fluctuations in niche availability. Our results provide insights into the evolution of genetic and cultural diversity in Homo sapiens .
Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. In ancient DNA research, such characters can provide further information on population continuity, evolution, climate change, species migration, or trade, depending on archaeological context. Yet, assignment tests often rely on moderate- to high-coverage sequence data, which can be difficult to obtain for many ancient specimens and in ecological studies, which often use sequencing techniques such as ddRAD to bypass the need for costly whole-genome sequencing. We have developed a novel approach that efficiently assigns biologically relevant information (such as population identity or structural variants) in extremely low-coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic Single Nucleotide Polymorphisms (SNPs) associated with a biological characteristic. Low coverage alignment files from ancient specimens are subsequently compared to these databases to ascertain allelic state yielding a joint probability for each association. To assess the efficacy of this approach, we assigned inversion haplotypes and population identity in several species including Heliconius butterflies, Atlantic herring, and Atlantic cod. We used both modern and ancient specimens, including the first whole-genome sequence data recovered from ancient herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low-coverage (e.g. 0.0001x fold) based on genome-wide SNPs. This approach will therefore increase the number of ancient samples in ecological and bioarchaeological research for which relevant biological information can be obtained.
Genomic assignment tests can provide important diagnostic biological characteristics, such as population of origin or ecotype. Yet, assignment tests often rely on moderate‐ to high‐coverage sequence data that can be difficult to obtain for fields such as molecular ecology and ancient DNA. We have developed a novel approach that efficiently assigns biologically relevant information (i.e., population identity or structural variants such as inversions) in extremely low‐coverage sequence data. First, we generate databases from existing reference data using a subset of diagnostic single nucleotide polymorphisms (SNPs) associated with a biological characteristic. Low‐coverage alignment files are subsequently compared to these databases to ascertain allelic state, yielding a joint probability for each association. To assess the efficacy of this approach, we assigned haplotypes and population identity in Heliconius butterflies, Atlantic herring, and Atlantic cod using chromosomal inversion sites and whole‐genome data. We scored both modern and ancient specimens, including the first whole‐genome sequence data recovered from ancient Atlantic herring bones. The method accurately assigns biological characteristics, including population membership, using extremely low‐coverage data (as low as 0.0001x) based on genome‐wide SNPs. This approach will therefore increase the number of samples in evolutionary, ecological and archaeological research for which relevant biological information can be obtained.
Understanding the historical emergence and growth of long-range fisheries can provide fundamental insights into the timing of ecological impacts and the development of coastal communities during the last millennium. Whole genome sequencing approaches can improve such understanding by determining the origin of archaeological fish specimens that may have been obtained from historic trade or distant water. Here, we used genome-wide data to individually infer the biological source of 37 ancient Atlantic cod specimens (ca. 1050 to 1950 CE) from England and Spain. Our findings provide novel genetic evidence that eleventh- to twelfth-century specimens from London were predominantly obtained from nearby populations, while thirteenth- to fourteenth-century specimens derived from distant sources. Our results further suggest that Icelandic cod was exported to London earlier than previously reported. Our observations confirm the chronology and geography of the trans-Atlantic cod trade from Newfoundland to Spain starting by the early sixteenth century. Our findings demonstrate the utility of whole genome sequencing and ancient DNA approaches to describe the globalisation of marine fisheries and increase our understanding regarding the extent of the North-Atlantic fish trade and long-range fisheries in medieval and early modern times.
Ancient DNA (aDNA) approaches have been successfully used to infer the long-term impacts of climate change, domestication, and human exploitation in a range of terrestrial species. Nonetheless, studies investigating such impacts using aDNA in marine species are rare. Atlantic cod (Gadus morhua), is an economically important species that has experienced dramatic census population declines during the last century. Here, we investigated 48 ancient mitogenomes from historical specimens obtained from a range of archeological excavations in northern Europe dated up to 6,500 BCE. We compare these mitogenomes to those of 496 modern conspecifics sampled across the North Atlantic Ocean and adjacent seas. Our results confirm earlier observations of high levels of mitogenomic variation and a lack of mutation-drift equilibrium—suggestive of population expansion. Furthermore, our temporal comparison yields no evidence of measurable mitogenomic changes through time. Instead, our results indicate that mitogenomic variation in Atlantic cod reflects past demographic processes driven by major historical events (such as oscillations in sea level) and subsequent gene flow rather than contemporary fluctuations in stock abundance. Our results indicate that historical and contemporaneous anthropogenic pressures such as commercial fisheries have had little impact on mitogenomic diversity in a wide-spread marine species with high gene flow such as Atlantic cod. These observations do not contradict evidence that overfishing has had negative consequences for the abundance of Atlantic cod and the importance of genetic variation in implementing conservation strategies. Instead, these observations imply that any measures toward the demographic recovery of Atlantic cod in the eastern Atlantic, will not be constrained by recent loss of historical mitogenomic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.