For the sustainable development of construction materials, supplementary cementitious materials (SCMs) are commonly added to self-compacting concrete (SCC). This paper reviewed the application techniques and hydration mechanisms of SCMs in SCC. The impacts of SCMs on the microstructure and performance of SCC were also discussed. SCMs are used as a powder material to produce SCC by replacing 10% to 50% of cement. Hydration mechanisms include the pozzolanic reaction, alkaline activation, and adsorption effect. Moreover, the filling effect and dilution effect of some SCMs can refine the pore structure and decrease the temperature rise of concrete, respectively. Specifically, the spherical particles of fly ash can improve the fluidity of SCC, and the aluminum-containing mineral phase can enhance the resistance to chloride ion penetration. Silica fume will increase the water demand of the paste and promote its strength development (a replacement of 10% results in a 20% increase at 28 days). Ground-granulated blast furnace slag may reduce the early strength of SCC. The adsorption of Ca2+ by CaCO3 in limestone powder can accelerate the hydration of cement and promote its strength development.
This paper discusses a sustainable way to prepare construction materials from metallurgical slags. Steel slag, copper slag, lead-zinc slag, and electric furnace ferronickel slag are the most common metallurgical slags that could be used as supplementary cementitious materials (SCMs) and aggregates. However, they have some adverse effects that could significantly limit their applications when used in cement-based materials. The setting time is significantly delayed when steel slag is utilized as an SCM. With the addition of 30% steel slag, the initial setting time and final setting time are delayed by approximately 60% and 40%, respectively. Because the specific gravity of metallurgical slags is 10–40% higher than that of natural aggregates, metallurgical slags tend to promote segregation when utilized as aggregates. Furthermore, some metallurgical slags deteriorate the microstructure of hardened pastes, resulting in higher porosity, lower mechanical properties, and decreased durability. In terms of safety, there are issues with the soundness of steel slag, the alkali-silica reaction involving cement and electric furnace ferronickel slag, and the environmental safety concerns, due to the leaching of heavy metals from copper slag and lead-zinc slag.
Hexagonal boron nitride (h‐BN) has excellent oxidation resistance, self‐healing function, and self‐lubricating properties, which can significantly improve the oxidation resistance of C/C‐SiC composites in low or medium temperature condition and affect their tribological properties and mechanisms. In this work, C/C‐SiC and C/C‐BN‐SiC composites were prepared by the same molding, carbonization and liquid silicon infiltration (LSI) process and the influences of h‐BN addition on their microstructure, tribological properties, and mechanisms were investigated. h‐BN addition can promote the formation of friction film and reduce the oxidation wear of the composites. Compared with C/C‐SiC composites, due to more lubricant components and different matrix structure, the C/C‐BN‐SiC composite shows lower wear rate (reduced by 53%) and moderate rather than too high coefficient of friction (CoF) and its CoF is less influenced by braking velocity. Moreover, the friction process is more stable and does not appear clamping stagnation phenomenon in high braking speed condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.