In order to optimize the parameters of a pre-splitting blasting hole network, taking an open-pit mine in Inner Mongolia as the engineering background, the numerical models of different pore sizes and hole spacing were established by LS-DYNA software. The stress wave propagation law, peak stress change and rock fracture state under various working conditions were analyzed. The optimization formula of a hole network relationship was proposed and verified on site. The results show that the shock wave generated by the explosion propagates rapidly upward from the explosion source and forms a plastic flow zone around the two boreholes. The energy consumption is the largest at this stage. With the propagation of the stress wave, energy dissipates, and its waveform gradually attenuates to a compression wave and seismic wave. In each working condition, a 110 mm aperture first cracked in the stress wave superposition area compared with other working conditions, while a 120 mm aperture delayed evolution to the seismic wave compared with different borehole aperture, and the energy attenuation rate is the slowest. Meanwhile, the fastest energy attenuation rate is with the 130 mm borehole aperture. With the attenuation of the propagation energy of the stress wave, among the four measuring points set at the center of the connection between the two boreholes, the Y-direction stress of the observation points B, C and D is stable between 2.3 and 3.5 MPa, and the Y-direction stress of the observation point A is strenuous between −1.3 and 1.2 MPa. The B, C and D observation points of 90–130 mm aperture conditions showed rock cracking at 7–9 times, 7–9 times, 7–10 times, 7–11 times, and 7–11 times hole spacing, respectively. The cracks of the two boreholes were interconnected. The optimal hole network relationship is obtained by fitting: y = 1.12 + 0.076x, where y is the optimal hole diameter and hole spacing multiple, and x is the hole diameter, which is verified by engineering. After blasting, the slope is smooth and smooth, and the half-hole rate is guaranteed to be above 90%.
A numerical simulation method is proposed to study the deformation and failure rule of granite with multi-directional tensile stress, based on the importance of the rock tension. This investigation took into consideration the fact that the current experimental equipment cannot complete multi-directional tension experiments for rock. The deformation and failure rule of the granite material model with biaxial and triaxial tensile stress are studied using the numerical simulation software CASRock. The results show that in a biaxial tensile stress state, the tensile strength of granite decreases with the increase in the confining pressure, but the influence of the compression confining pressure on the strength reduction is greater than the tensile confining pressure. The number of cracks generated during failure decreases with the increase in the compressive confining pressure, and the inclination angle of the failure surface increases with the increase in the compressive confining pressure. In the three-direction tension stress state, the tensile strength of granite decreases slightly with the increase in the compressive confining pressure. However, when the compressive confining pressure in one direction is close to the uniaxial tensile strength, the tensile strength of granite will decrease quickly, and the failure result is similar to that of the uniaxial tensile failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.