Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. In Arabidopsis (Arabidopsis thaliana), cryptochrome 1 (CRY1) mediates blue light-induced photomorphogenesis, which is characterized by reduced hypocotyl elongation and enhanced anthocyanin production, whereas GA signaling mediated by the gibberellin (GA) receptor GA INSENSITIVE DWARF1 (GID1) and DELLA proteins promotes hypocotyl elongation and inhibits anthocyanin accumulation. Whether CRY1 control of photomorphogenesis involves regulation of GA signaling is largely unknown. Here, we show that CRY1 signaling involves the inhibition of GA signaling through repression of GA-induced degradation of DELLA proteins. CRY1 physically interacts with DELLA proteins in a blue light-dependent manner, leading to their dissociation from SLEEPY1 (SLY1) and the inhibition of their ubiquitination. Moreover, CRY1 interacts directly with GID1 in a blue light-dependent but GA-independent manner, leading to the inhibition of the interaction between GID1 with DELLA proteins. These findings suggest that CRY1 controls photomorphogenesis through inhibition of GA-induced degradation of DELLA proteins and GA signaling, which is mediated by CRY1 inhibition of the interactions of DELLA proteins with GID1 and SCFSLY1, respectively.
Light is a key environmental cue that fundamentally regulates plant growth and development, which is mediated by the multiple photoreceptors including the blue light photoreceptor cryptochrome 1 (CRY1). The signaling mechanism of Arabidopsis thaliana CRY1 involves direct interactions with CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)/SUPPRESSOR OF PHYA-105 1 (SPA1) and stabilization of COP1 substrate ELONGATED HYPOCOTYL 5 (HY5). H2A.Z is an evolutionarily conserved histone variant, which plays a critical role in transcriptional regulation through its deposition in chromatin catalyzed by SWR1 complex. Here we show that CRY1 physically interacts with SWC6 and ARP6, the SWR1 complex core subunits that are essential for mediating H2A.Z deposition, in a blue light-dependent manner, and that blue light-activated CRY1 enhances the interaction of SWC6 with ARP6. Moreover, HY5 physically interacts with SWC6 and ARP6 to direct the recruitment of SWR1 complex to HY5 target loci. Based on previous studies and our findings, we propose that CRY1 promotes H2A.Z deposition to regulate HY5 target gene expression and photomorphogenesis in blue light through the enhancement of both SWR1 complex activity and HY5 recruitment of SWR1 complex to HY5 target loci, which is likely mediated by interactions of CRY1 with SWC6 and ARP6, and CRY1 stabilization of HY5, respectively.
Arabidopsis cryptochrome 1 (CRY1) is an important blue light photoreceptor that promotes photomorphogenesis under blue light. The blue light photoreceptors CRY2 and phototropin 1, and the red/far-red light photoreceptors phytochromes B and A undergo degradation in response to blue and red light, respectively. This study investigated whether and how CRY1 might undergo degradation in response to high-intensity blue light (HBL).We demonstrated that CRY1 is ubiquitinated and degraded through the 26S proteasome pathway in response to HBL. We found that the E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) is involved in mediating HBL-induced ubiquitination and degradation of CRY1. We also found that the E3 ubiquitin ligases LRBs physically interact with CRY1 and are also involved in mediating CRY1 ubiquitination and degradation in response to HBL.We further demonstrated that blue-light inhibitor of cryptochromes 1 interacts with CRY1 in a blue-light-dependent manner to inhibit CRY1 dimerization/oligomerization, leading to the repression of HBL-induced degradation of CRY1.Our findings indicate that the regulation of CRY1 stability in HBL is coordinated by COP1 and LRBs, which provides a mechanism by which CRY1 attenuates its own signaling and optimizes photomorphogenesis under HBL.
Background/Aims: Arachidonic acid (AA) and its metabolites are important endogenous lipid messengers. In this study, we test the effect of Leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of AA, on L-type calcium channels in A7r5 rat aortic vascular smooth muscle cells. Methods: L-type calcium channel currents were recorded by a patch-clamp technique. The mRNA expression of CaV1.2 was determined by Real-time RT-PCR. The protein expression of CaV1.2 and p38 activity was determined by Western blot analysis. Results: LTB4 inhibits L-type channel currents in A7r5 cells in a dose-and time- dependent manner. LTB4 reduced the mRNA/protein expression of CaV1.2 channels in A7r5 cells. BLT1 receptor antagonist LY29311 abrogated the inhibitory effect of LTB4, while BLT2 receptor antagonist LY255283 had no effect. 5Z-7-oxozeaenol and SB203580, which block TAK1 and p38 kinase respectively, abrogated the LTB4 inhibitory effect on L-type calcium channels. LTB4 increased p38 activity in A7r5 cells. Blockage of Src, PI3K, JNK and NF-κB kinase had no effects on LTB4 inhibition of L-type calcium channel currents in A7r5 cells. Conclusion: We conclude that LTB4 inhibits L-type calcium channels through BLT1-TAk1-p38 signaling pathway. The LTB4 inhibitory effect on L-type calcium channels may be involved in its pathological processes such as atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.