Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin.
Lignin is the second most abundant carbon polymer on earth and despite having more fuel value than cellulose, it currently is considered a waste byproduct in many industrial lignocellulose applications. Valorization of lignin relies on effective and green methods of delignification, with a growing interest in the use of microbes. Here we investigate the physiology and lignin biotransformation mechanisms of the novel facultative anaerobic bacterium, Tolumonas lignolytica BRL6-1, under anoxic conditions. Physiological and biochemical changes were compared between cells grown anaerobically in either lignin-amended or unamended conditions. In the presence of lignin, BRL6-1 had a higher biomass and shorter lag phase compared to unamended conditions, and 14% of the proteins determined to be significantly higher in abundance by log2 fold-change of 2 or greater were related to Fe(II) transport in early exponential phase. Ferrozine assays of the supernatant (<10 kDa fraction) confirmed that Fe(III) was bound to lignin and reduced to Fe(II) only in the presence of BRL6-1, suggesting redox activity by the cells. LC-MS/MS analysis of the secretome showed an extra band at 20 kDa in lignin-amended conditions. Protein sequencing of this band identified a protein of unknown function with homology to enzymes in the radical SAM superfamily. Expression of this protein in lignin-amended conditions suggests its role in radical formation. From our findings, we suggest that BRL6-1 is using a protein in the radical SAM superfamily to interact with the Fe(III) bound to lignin and reducing it to Fe(II) for cellular use, increasing BRL6-1 yield under lignin-amended conditions. This interaction potentially generates organic free radicals and causes a radical cascade which could modify and depolymerize lignin. Further research should clarify the extent to which this mechanism is similar to previously described aerobic chelator-mediated Fenton chemistry or radical producing lignolytic enzymes, such as lignin peroxidases, but under anoxic conditions.
The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.