In real-world applications, multiple robots need to be dynamically deployed to their appropriate locations as teams while the distance cost between robots and goals is minimized, which is known to be an NP-hard problem. In this paper, a new framework of team-based multi-robot task allocation and path planning is developed for robot exploration missions through a convex optimization-based distance optimal model. A new distance optimal model is proposed to minimize the traveled distance between robots and their goals. The proposed framework fuses task decomposition, allocation, local sub-task allocation, and path planning. To begin, multiple robots are firstly divided and clustered into a variety of teams considering interrelation and dependencies of robots, and task decomposition. Secondly, the teams with various arbitrary shape enclosing intercorrelative robots are approximated and relaxed into circles, which are mathematically formulated to convex optimization problems to minimize the distance between teams, as well as between a robot and their goals. Once the robot teams are deployed into their appropriate locations, the robot locations are further refined by a graph-based Delaunay triangulation method. Thirdly, in the team, a self-organizing map-based neural network (SOMNN) paradigm is developed to complete the dynamical sub-task allocation and path planning, in which the robots are dynamically assigned to their nearby goals locally. Simulation and comparison studies demonstrate the proposed hybrid multi-robot task allocation and path planning framework is effective and efficient.
Robotic Information Gathering (RIG) is a foundational research topic that answers how a robot (team) collects informative data to efficiently build an accurate model of an unknown target function under robot embodiment constraints. RIG has many applications, including but not limited to autonomous exploration and mapping, 3D reconstruction or inspection, search and rescue, and environmental monitoring. A RIG system relies on a probabilistic model’s prediction uncertainty to identify critical areas for informative data collection. Gaussian processes (GPs) with stationary kernels have been widely adopted for spatial modeling. However, real-world spatial data is typically non-stationary—different locations do not have the same degree of variability. As a result, the prediction uncertainty does not accurately reveal prediction error, limiting the success of RIG algorithms. We propose a family of non-stationary kernels named Attentive Kernel (AK), which is simple and robust and can extend any existing kernel to a non-stationary one. We evaluate the new kernel in elevation mapping tasks, where AK provides better accuracy and uncertainty quantification over the commonly used stationary kernels and the leading non-stationary kernels. The improved uncertainty quantification guides the downstream informative planner to collect more valuable data around the high-error area, further increasing prediction accuracy. A field experiment demonstrates that the proposed method can guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in locations with significant spatial variations, enabling the model to characterize salient environmental features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.