High energy density, durability, and flexibility of supercapacitors are required urgently for the next generation of wearable and portable electronic devices. Herein, a novel strategy is introduced to boost the energy density of flexible soild-state supercapacitors via rational design of hierarchically graphene nanocomposite (GNC) electrode material and employing an ionic liquid gel polymer electrolyte. The hierarchical graphene nanocomposite consisting of graphene and polyaniline-derived carbon is synthesized as an electrode material via a scalable process. The meso/microporous graphene nanocomposites exhibit a high specific capacitance of 176 F g −1 at 0.5 A g −1 in the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4 ) with a wide voltage window of 3.5 V, good rate capability of 80.7% in the range of 0.5-10 A g −1 and excellent stability over 10 000 cycles, which is attributed to the superior conductivity (7246 S m −1 ), and quite large specific surface area (2416 m 2 g −1 ) as well as hierarchical meso/micropores distribution of the electrode materials. Furthermore, flexible solid-state supercapacitor devices based on the GNC electrodes and gel polymer electrolyte film are assembled, which offer high specific capacitance of 180 F g −1 at 1 A g −1 , large energy density of 75 Wh Kg −1 , and remarkable flexible performance under consecutive bending conditions.
Highly active, cost‐effective, and durable catalysts for oxygen evolution reaction (OER) are required in energy conversion and storage processes. A facile synthesis of CoFe layered double hydroxide (CoFe LDH) is reported as a highly active and stable oxygen evolution catalyst. By varying the concentration of the metal ion precursor, the Co/Fe ratios of LDH products can be tuned from 0.5 to 7.4. The structure and electrocatalytic activity of the obtained catalysts were found to show a strong dependence on the Co/Fe ratios. The Co2Fe1 LDH sample exhibited the best electrocatalytic performance for OER with an onset potential of 1.52 V (vs. the reversible hydrogen electrode, RHE) and a Tafel slope of 83 mV dec−1. The Co2Fe1 LDH was further loaded onto a Ni foam (NF) substrate to form a 3D porous architecture electrode, offering a long‐term current density of 100 mA cm−2 at 1.65 V (vs. RHE) towards the OER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.