This paper explores the possibilities of transformable structures in architectural and structural engineering. Key aspects concerning the design, analysis and construction of mobile, as well as adaptable constructions, are explained. The transformation of such structures, intended to meet changing requirements, is done by using mechanisms (deployable/foldable) or reconfigurable components (demountable kit-of-parts). Transformable structures can adapt their shape or function according to changing circumstances, to meet rapidly evolving needs, induced by a society which-progressively-embraces the concept of sustainable design. This is further supported by the understanding that structures are not designed in an end state, but in a transition state, hence 'transformable structures'. Based on how this transformation is realised, two groups of structures can be distinguished. The transformation of the structure is primarily done by either: (i) incorporating a kinematic mechanism, enabling the structure to deploy from a compact configuration (e.g. for transport) to a larger, expanded state in which it can fulfil its architectural function (e.g. providing shelter) or, (ii) by designing and realising the structure as a kit-of-parts system (cfr. Meccano construction toy) with dry, reversible connections between the constitutive components, enabling design for disassembly, whereby all components can be reconfigured, replaced or re-used.
In architectural engineering, deployable scissor structures are generally used for mobile and temporary applications. They are characterised by their dual functionality as either kinematic mechanisms (during deployment) or loadbearing skeletal structures (after deployment). It is crucial to realise that there is a direct and mutual relationship between the geometry, the kinematics and the structural response of the scissor system. Due to a relatively complex design process it can be highly beneficial to evaluate these structures at a pre-design stage in terms of their structural performance. In order to do so, new computational methods are introduced. Karamba is a finite element plug-in for Grasshopper, fully embedded in the 3D modelling software Rhinoceros, which calculates interactively the response of three dimensional beam structures. The advantage of this new tool is the compatibility with the parametric environment of Grasshopper. These software tools are still in development, but already show their potential in terms of geometric modelling and structural optimisation. In this research it is shown in which way these evolving computational methods can contribute to the design of deployable scissor structures. By using the proposed methodology of preliminary evaluation, the scissor structures are geometrically and structurally optimised at an early stage, thereby enhancing the overall design process and facilitating further detailed analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.