Three major axon pathways cross the midline of the vertebrate forebrain early in embryonic development: the postoptic commissure (POC), the anterior commissure (AC) and the optic nerve. We show that a small population of Gfap+astroglia spans the midline of the zebrafish forebrain in the position of, and prior to, commissural and retinal axon crossing. These glial `bridges' form in regions devoid of the guidance molecules slit2 and slit3,although a subset of these glial cells express slit1a. We show that Hh signaling is required for commissure formation, glial bridge formation, and the restricted expression of the guidance molecules slit1a, slit2, slit3 and sema3d, but that Hh does not appear to play a direct role in commissural and retinal axon guidance. Reducing Slit2 and/or Slit3 function expanded the glial bridges and caused defasciculation of the POC, consistent with a `channeling' role for these repellent molecules. By contrast, reducing Slit1a function led to reduced midline axon crossing, suggesting a distinct role for Slit1a in midline axon guidance. Blocking Slit2 and Slit3, but not Slit1a, function in the Hh pathway mutant yot (gli2DR) dramatically rescued POC axon crossing and glial bridge formation at the midline, indicating that expanded Slit2 and Slit3 repellent function is largely responsible for the lack of midline crossing in these mutants. This analysis shows that Hh signaling helps to pattern the expression of Slit guidance molecules that then help to regulate glial cell position and axon guidance across the midline of the forebrain.
To address how the highly stereotyped retinotectal pathway develops in zebrafish, we used fixed-tissue and time-lapse imaging to analyze morphology and behavior of wild-type and mutant retinal growth cones. Wild-type growth cones increase in complexity and pause at the midline. Intriguingly, they make occasional ipsilateral projections and other pathfinding errors, which are always eventually corrected. In the astray/robo2 mutant, growth cones are larger and more complex than wild-type. astray axons make midline errors not seen in wild-type, as well as errors both before and after the midline. astray errors are rarely corrected. The presumed Robo ligands Slit2 and Slit3 are expressed near the pathway in patterns consistent with their mediating pathfinding through Robo2. Thus, Robo2 does not control midline crossing of retinal axons, but rather shapes their pathway, by both preventing and correcting pathfinding errors.
Small Heat Shock Proteins (sHSPs) have important roles in preventing disease and promoting resistance to environmental stressors. Mutations in any one of a number of sHSPs, including HSP27 (HSPB1), HSP22 (HSPB8), alphaA-crystallin (HSPB4), or alphaB-crystallin (HSPB5) can result in neuronal degeneration, myopathy, and/or cataract in humans. Ten sHSPs are known in humans, and thirteen have been identified in teleost fish. Here we report the identification of thirteen zebrafish sHSPs. Using a combination of phylogenetic analysis and analysis of synteny, we have determined that ten are likely orthologs of human sHSPs. We have used quantitative RT-PCR to determine the relative expression levels of all thirteen sHSPs during development and in response to heat shock. Our findings indicate that most of the zebrafish sHSPs are expressed during development, and five of these genes are transcriptionally upregulated by heat shock at one or more stages of development.
Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory,consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the astphenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.
Small heat shock proteins (sHSPs), or ␣-crystallins, are low-molecular weight proteins found in every kingdom and nearly every species examined to date. Many, if not all, sHSPs act as molecular chaperones. Several also have functions independent of their chaperone activity, and at least a few are expressed in specific spatiotemporal patterns during embryonic and/or juvenile stages, suggesting specific roles during development. To date, however, no one has systematically characterized the expression patterns of all of the sHSPs during development in any organism. We have characterized the normal heat shock-induced expression patterns of all 13 zebrafish sHSPs during development. Seven of the sHSPs are expressed in a tissue-specific manner during development, and five are upregulated by heat shock. The results of these studies provide a foundation for analysis of sHSP function during normal development and their roles in protecting cells from the effects environmental stressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.