Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by increased cancer incidence, cell cycle checkpoint defects, and ionizing radiation sensitivity. We have isolated the gene encoding p95, a member of the hMre11/hRad50 double-strand break repair complex. The p95 gene mapped to 8q21.3, the region that contains the NBS locus, and p95 was absent from NBS cells established from NBS patients. p95 deficiency in these cells completely abrogates the formation of hMre11/hRad50 ionizing radiation-induced foci. Comparison of the p95 cDNA to the NBS1 cDNA indicated that the p95 gene and NBS1 are identical. The implication of hMre11/hRad50/p95 protein complex in NBS reveals a direct molecular link between DSB repair and cell cycle checkpoint functions.
Proteolytic cleavage of the six known insulinlike growth factor binding proteins (IGFBPs) is a powerful means of rapid structure and function modification of these important growth-regulatory proteins. Intact IGFBP-4 is a potent inhibitor of IGF action in vitro, and cleavage of IG-FBP-4 has been shown to abolish its ability to inhibit IGF stimulatory effects in a variety of systems, suggesting that IGFBP-4 proteolysis acts as a positive regulator of IGF bioavailability. Here we report the isolation of an IGFdependent IGFBP-4-specific protease from human fibroblastconditioned media and its identification by mass spectrometry microsequencing as pregnancy-associated plasma protein-A (PAPP-A), a protein of unknown function found in high concentrations in the maternal circulation during pregnancy. Antibodies raised against PAPP-A both inhibited and immunodepleted IGFBP-4 protease activity in human fibroblastconditioned media. Moreover, PAPP-A purified from pregnancy sera had IGF-dependent IGFBP-4 protease activity. PAPP-A mRNA was expressed by the human fibroblasts and osteoblasts, and PAPP-A protein was secreted into the culture medium. In conclusion, we have identified an IGF-dependent IGFBP protease and at the same time assigned a function to PAPP-A. This represents an unanticipated union of two areas of research that were not linked in any way before this report.
A systematic proteomic analysis of rice (Oryza sativa) leaf, root, and seed tissue using two independent technologies, two-dimensional gel electrophoresis followed by tandem mass spectrometry and multidimensional protein identification technology, allowed the detection and identification of 2,528 unique proteins, which represents the most comprehensive proteome exploration to date. A comparative display of the expression patterns indicated that enzymes involved in central metabolic pathways are present in all tissues, whereas metabolic specialization is reflected in the occurrence of a tissue-specific enzyme complement. For example, tissuespecific and subcellular compartment-specific isoforms of ADPglucose pyrophosphorylase were detected, thus providing proteomic confirmation of the presence of distinct regulatory mechanisms involved in the biosynthesis and breakdown of separate starch pools in different tissues. In addition, several previously characterized allergenic proteins were identified in the seed sample, indicating the potential of proteomic approaches to survey food samples with regard to the occurrence of allergens.
Rapid, voltage-dependent potentiation of skeletal muscle L-type calcium channels requires phosphorylation by cAMP-dependent protein kinase (PKA) anchored via an A kinase anchoring protein (AKAP). Here we report the isolation, primary sequence determination, and functional characterization of AKAP15, a lipid-anchored protein of 81 amino acid residues with a single amphipathic helix that binds PKA. AKAP15 colocalizes with L-type calcium channels in transverse tubules and is associated with L-type calcium channels in transfected cells. A peptide fragment of AKAP15 encompassing the RII-binding domain blocks voltage-dependent potentiation. These results indicate that AKAP15 targets PKA to the calcium channel and plays a critical role in voltage-dependent potentiation and regulation of skeletal muscle contraction. The expression of AKAP15 in the brain and heart suggests that it may mediate rapid PKA regulation of L-type calcium channels in neurons and cardiac myocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.