Histological evaluation of endometrium has been the gold standard for clinical diagnosis and management of women with endometrial disorders. However, several recent studies have questioned the accuracy and utility of such evaluation, mainly because of significant intra- and interobserver variations in histological interpretation. To examine the possibility that biochemical or molecular signatures of endometrium may prove to be more useful, we have investigated whole-genome molecular phenotyping (54,600 genes and expressed sequence tags) of this tissue sampled across the cycle in 28 normo-ovulatory women, using high-density oligonucleotide microarrays. Unsupervised principal component analysis of all samples revealed that samples self-cluster into four groups consistent with histological phenotypes of proliferative (PE), early-secretory (ESE), mid-secretory (MSE), and late-secretory (LSE) endometrium. Independent hierarchical clustering analysis revealed equivalent results, with two major dendrogram branches corresponding to PE/ESE and MSE/LSE and sub-branching into the four respective phases with heterogeneity among samples within each sub-branch. K-means clustering of genes revealed four major patterns of gene expression (high in PE, high in ESE, high in MSE, and high in LSE), and gene ontology analysis of these clusters demonstrated cycle-phase-specific biological processes and molecular functions. Six samples with ambiguous histology were identically assignable to a cycle phase by both principal component analysis and hierarchical clustering. Additionally, pairwise comparisons of relative gene expression across the cycle revealed genes/families that clearly distinguish the transitions of PE-->ESE, ESE-->MSE, and MSE-->LSE, including receptomes and signaling pathways. Select genes were validated by quantitative RT-PCR. Overall, the results demonstrate that endometrial samples obtained by two different sampling techniques (biopsy and curetting hysterectomy specimens) from subjects who are as normal as possible in a human study and including those with unknown histology, can be classified by their molecular signatures and correspond to known phases of the menstrual cycle with identical results using two independent analytical methods. Also, the results enable global identification of biological processes and molecular mechanisms that occur dynamically in the endometrium in the changing steroid hormone milieu across the menstrual cycle in normo-ovulatory women. The results underscore the potential of gene expression profiling for developing molecular diagnostics of endometrial normalcy and abnormalities and identifying molecular targets for therapeutic purposes in endometrial disorders.
Proteolytic cleavage of the six known insulinlike growth factor binding proteins (IGFBPs) is a powerful means of rapid structure and function modification of these important growth-regulatory proteins. Intact IGFBP-4 is a potent inhibitor of IGF action in vitro, and cleavage of IG-FBP-4 has been shown to abolish its ability to inhibit IGF stimulatory effects in a variety of systems, suggesting that IGFBP-4 proteolysis acts as a positive regulator of IGF bioavailability. Here we report the isolation of an IGFdependent IGFBP-4-specific protease from human fibroblastconditioned media and its identification by mass spectrometry microsequencing as pregnancy-associated plasma protein-A (PAPP-A), a protein of unknown function found in high concentrations in the maternal circulation during pregnancy. Antibodies raised against PAPP-A both inhibited and immunodepleted IGFBP-4 protease activity in human fibroblastconditioned media. Moreover, PAPP-A purified from pregnancy sera had IGF-dependent IGFBP-4 protease activity. PAPP-A mRNA was expressed by the human fibroblasts and osteoblasts, and PAPP-A protein was secreted into the culture medium. In conclusion, we have identified an IGF-dependent IGFBP protease and at the same time assigned a function to PAPP-A. This represents an unanticipated union of two areas of research that were not linked in any way before this report.
PAPP-A is present in unstable plaques, and circulating levels are elevated in acute coronary syndromes; these increased levels may reflect the instability of atherosclerotic plaques. PAPP-A is a new candidate marker of unstable angina and acute myocardial infarction.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.
A novel metalloproteinase with similarity to pregnancy-associated plasma protein-A (PAPP-A), which we denoted PAPP-A2, has been identified. Through expression in mammalian cells we showed that recombinant PAPP-A2 polypeptide of 1558 residues resulted from processing of a 1791-residue prepro-protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.