Critical thinking is considered to be an important competence for students and graduates of higher education. Yet, it is largely unclear which teaching methods are most effective in supporting the acquisition of critical thinking skills, especially regarding one important aspect of critical thinking: avoiding biased reasoning. The present study examined whether creating desirable difficulties in instruction by prompting students to generate explanations of a problem-solution to themselves (i.e., self-explaining) is effective for fostering learning and transfer of unbiased reasoning. Seventy-nine first-year students of a Dutch Applied University of Sciences were first instructed on two categories of "heuristics and biases" tasks (syllogism and base-rate or Wason and conjunction). Thereafter, they practiced these either with (self-explaining condition) or without (no self-explaining condition) self-explanation prompts that asked them to motivate their answers. Performance was measured on a pretest, immediate posttest, and delayed (2 weeks later) posttest on all four task categories, to examine effects on learning (performance on practiced tasks) and transfer (performance on non-practiced tasks). Participants' learning and transfer performance improved to a comparable degree from pretest to immediate posttest in both conditions, and this higher level of performance was retained on the delayed posttest. Surprisingly, self-explanation prompts had a negative effect on posttest performance on practiced tasks when those were Wason and conjunction tasks, and self-explaining had no effect on transfer performance. These findings suggest that the benefits of explicit instruction and practice on learning and transfer of unbiased reasoning cannot be enhanced by increasing the difficulty of the practice tasks through self-explaining.
There is a need for effective methods to teach critical thinking (CT). One instructional method that seems promising is comparing correct and erroneous worked examples (i.e., contrasting examples). The aim of the present study, therefore, was to investigate the effect of contrasting examples on learning and transfer of CT-skills, focusing on avoiding biased reasoning. Students (N = 170) received instructions on CT and avoiding biases in reasoning tasks, followed by: (1) contrasting examples, (2) correct examples, (3) erroneous examples, or (4) practice problems. Performance was measured on a pretest, immediate posttest, 3-week delayed posttest, and 9-month delayed posttest. Our results revealed that participants’ reasoning task performance improved from pretest to immediate posttest, and even further after a delay (i.e., they learned to avoid biased reasoning). Surprisingly, there were no differences in learning gains or transfer performance between the four conditions. Our findings raise questions about the preconditions of contrasting examples effects. Moreover, how transfer of CT-skills can be fostered remains an important issue for future research.
It is yet unclear which teaching methods are most effective for improving critical thinking (CT) skills and especially for the ability to avoid biased reasoning. Two experiments (laboratory: N = 85; classroom: N = 117), investigated the effect of practice schedule (interleaved/blocked) on students' learning and transfer of unbiased reasoning, and whether it interacts with practice-task format (worked-examples/problems). After receiving CT-instructions, participants practiced in: (1) a blocked schedule with worked examples, (2) an interleaved schedule with worked examples, (3) a blocked schedule with problems, or (4) an interleaved schedule with problems. In both experiments, learning outcomes improved after instruction/practice. Surprisingly, there were no indications that interleaved practice led to better learning/transfer than blocked practice, irrespective of task format. The practice-task format did matter for novices' learning: worked examples were more effective than low-assistance practice problems, which demonstrates -for the first timethat the worked-example effect also applies to novices' learning to avoid biased reasoning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.