Cough audio signal classification has been successfully used to diagnose a variety of respiratory conditions, and there has been significant interest in leveraging Machine Learning (ML) to provide widespread COVID-19 screening. The COUGHVID dataset provides over 25,000 crowdsourced cough recordings representing a wide range of participant ages, genders, geographic locations, and COVID-19 statuses. First, we contribute our open-sourced cough detection algorithm to the research community to assist in data robustness assessment. Second, four experienced physicians labeled more than 2,800 recordings to diagnose medical abnormalities present in the coughs, thereby contributing one of the largest expert-labeled cough datasets in existence that can be used for a plethora of cough audio classification tasks. Finally, we ensured that coughs labeled as symptomatic and COVID-19 originate from countries with high infection rates. As a result, the COUGHVID dataset contributes a wealth of cough recordings for training ML models to address the world’s most urgent health crises.
Wearable devices are an unobtrusive, costeffective means of continuous ambulatory monitoring of chronic cardiovascular diseases. However, on these resource-constrained systems, electrocardiogram (ECG) processing algorithms must consume minimal power and memory, yet robustly provide accurate physiological information. This work presents REWARD , the Relative-Energy-based WeArable R-Peak Detection algorithm, which is a novel ECG R-peak detection mechanism based on a nonlinear filtering method called Relative-Energy (Rel-En). REWARD is designed and optimized for real-time execution on wearable systems. Then, this novel algorithm is compared against three state-of-the-art real-time R-peak detection algorithms in terms of accuracy, memory footprint, and energy consumption. The Physionet QT and NST Databases were employed to evaluate the algorithms' accuracy and robustness to noise, respectively. Then, a 32-bit ARM Cortex-M3-based microcontroller was used to measure the energy usage, computational burden, and memory footprint of the four algorithms. REWARD consumed at least 63% less energy and 32% less RAM than the other algorithms while obtaining comparable accuracy results. Therefore, REWARD would be a suitable choice of R-peak detection mechanism for wearable devices that perform more complex ECG analysis, whose algorithms require additional energy and memory resources.
Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r2 = 0.85 vs.
r2 = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r2 = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by motion artifacts rather than instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.