Pomegranate (Punica granatum L.) is a rich source of constituents with confirmed strong biological activities. However, pomegranate peel, which encompasses approximately 30–40% of its weight, is treated as a biological waste. The aim of this paper was to evaluate the potential of pomegranate peel extracts and to propose its functional properties that can be used for development of functional products. Eight ethanol extracts of pomegranate peels (PPEs) were characterized by use of direct infusion quadrupole-time of flight (Q-TOF), and afterwards tested on their antioxidant, antibacterial and antiproliferative activities. Mass spectrometry analysis revealed that the most prevalent compounds in pomegranate peels were punicalagin, granatin and their derivatives. Analysed extracts had high total phenolic contents that ranged from 5766.44 to 10599.43 mg GAE/100 g, and strong antioxidant activity (7551.31–7875.42 and 100.25–176.60 μmol TE/100 g for DPPH and FRAP assays, respectively). The results of biological activity assays showed that all PPEs possessed antibacterial activity, and that S. aureus was the most sensitive specie with minimum inhibitory concentration and minimum bactericidal concentrations ranging from 0.8 to 6.4 mg/mL. Additionally, the analysis of antiproliferative activity revealed high potency of PPEs, as the IC50 values ranged from 0.132 mg/mL to 0.396 mg/mL. Multivariate analysis pointed out the most discriminative metabolites for antioxidant or antiproliferative activity. Overall, the pomegranate peel confirmed to be a highly valuable source of bioactive compounds that could be used to improve the food functional characteristics.
Research background. The composition of honey is influenced by the botanical source and geographical area of the nectar from which it is derived. Unifloral honeys reach higher market value than multifloral honeys due to their specific aromas, which result from volatile and phenolic compounds.
Experimental approach. The aim of our study was to characterize the phenolic composition of a rare unifloral variety of honey - Mentha spp. honey. For this purpose, we obtained standard physico-chemical analyses, pollen analysis, determined total phenolic and flavonoid content, analysed antioxidant activity and performed qualitative and quantitative analysis of phenolic compounds for 5 Menta spp. honeys.
Results and conclusions. Our results indicate that Mentha spp. honeys have high phenolic content, ranging from (76.7±0.6) to (90.1±1.1) mg GAE/100 g and (6.7±0.6) to (12.5±0.8) mg QUE/100 g for flavonoid content. These honeys also exhibit strong antioxidant activity ranging from (33.6±2.8) to (51.3±1.2) mg TE/100 g and (14.4±0.8) to (55.1±2.4) mg TE/100 g when analysed using DPPH and ABTS assays, respectively. Quantitative LC-MS/MS analysis revealed that the most abundant phenols in all samples were chrysin, apigenin and p-coumaric acid. Qualitative LC-MS/MS analysis identified the presence of kaempferide, diosmetin, acacetin and several caffeic acid derivatives.
Novelty and scientific contribution. Our study indicates that Mentha spp. honeys contain unique phenolic profiles, which likely contribute to their distinctive aroma and strong antioxidant activity. A detailed description of the rare honey varieties gives beekeepers greater visibility and easier access to the demanding natural products market.
The antioxidant activity and chemical stability of 6-amino-6-deoxy-L-ascorbic acid (D1) and N-methyl-6-amino-6-deoxy-L-ascorbic acid (D2) were examined with ABTS and DPPH assays and compared with the reference L-ascorbic acid (AA). In addition, the optimal storing conditions, as well as the pH at which the amino derivatives maintain stability, were determined using mass spectrometry. Comparable antioxidant activities were observed for NH-bioisosteres and AA. Moreover, D1 showed higher stability in an acidic medium than the parent AA. In addition, AA, D1, and D2 share the same docking profile, with wild-type human peroxiredoxin as a model system. Their docking scores are similar to those of dithiothreitol (DTT). This suggests a similar binding affinity to the human peroxiredoxin binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.