Abstract-The vagueness in decision-making may be due to ambiguity in the decisional requirements expression. Therefore, in the literature dealing with vagueness in decision systems, studies were concentrated on data vagueness and not on decision requirements. In order to evaluate the expression in decision-making requirements and in order to improve the data warehouses design quality, this paper presents a rigorous fuzzy ontologybased solution.Based on the latest Zadeh theory "Ref.[1]", Authors in "Ref. [2.3]", propose a solution consisting in using ontologies to provide "an understanding of how the meaning of a proposal can be composed of the meaning of its constituents. One of the limitations of this solution is the fuzziness presence only at the adjective sentence. In some sense, our proposal can be seen as a continuation of that work. We limit our study, in this paper to the "Near negative" operator case. To the best of our knowledge, this case has not been addressed yet in the data warehouse context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.