Early-life microbial exposure is of particular importance to growth, immune system development and long-lasting health. Hence, early microbiota composition is a promising predictive biomarker for health and disease but still remains poorly characterized in regards to susceptibility to diarrhoea. In the present study, we aimed to assess if gut bacterial community diversity and composition during the suckling period were associated with differences in susceptibility of pigs to post-weaning diarrhoea. Twenty piglets from 5 sows (4 piglets / litter) were weaned in poor housing conditions to challenge their susceptibility to post-weaning diarrhoea. Two weeks after weaning, 13 pigs exhibited liquid faeces during 2 or 3 days and were defined as diarrhoeic (D) pigs. The other 7 pigs did not have diarrhea during the whole post-weaning experimental periodand were defined as healthy (H) pigs. Using a molecular characterisation of fecal microbiota with CE-SSCP fingerprint, Next Generation Sequencing and qPCR, we show that D and H pigs were mainly discriminated as early as postnatal day (PND) 7, i.e. 4 weeks before post-weaning diarrhoea occurence. At PND 7 H pigs displayed a lower evenness and a higher abundance of Prevotellaceae, Lachnospiraceae, Ruminocacaceae and Lactobacillaceae compared to D pigs. The sPLS regression method indicates that these bacterial families were strongly correlated to a higher Bacteroidetes abundance observed in PND 30 H pigs one week before diarrhoea. These results emphasize the potential of early microbiota diversity and composition as being an indicator of susceptibility to post-weaning diarrhoea. Furthermore, they support the health promoting strategies of pig herds through gut microbiota engineering.
-Sunflower oil is well known because of its diversity of fatty acids profiles which allow different uses (food: dressing salads, margarines; nonfood: agrofuel, lubricants). Besides, crude oil contains high amounts of desirable minor components (tocopherols, phytosterols, polyphenols, phospholipids. . . ) that present important nutritional features with a positive impact on human health. The different steps of the refining process have as main objective to remove contaminants and other compounds that could hamper the continuity of the process or alter oil during storage. An indirect consequence of this treatment used to preserve food safety is that micronutriments of interest are also partially eliminated reducing the nutritional quality of the oil. This review describes in the first part the chemical composition of sunflower oil focusing on desirable and undesirable components. In the second part the refining process is detailed following the losses of micronutriments at each step of the process and the elimination of unwanted compounds. Keywords:Sunflower oil / minor components / tocopherols / sterols / refining Résumé -Effets du procédé de raffinage sur les composants mineurs de l'huile de tournesol : revue. L'huile de tournesol est bien connue pour la diversité de ses profils d'acides gras qui permettent des usages variés (alimentaireshuile de table et margarines -ou non alimentaires -agrocarburants et lubrifiants). En outre, l'huile brute contient aussi de grandes quantités de composés mineurs souhaitables (tocophérols, phytostérols, polyphénols, phospholipides. . . ) aux caractéristiques nutritionnelles importantes et à impact positif sur la santé humaine. Les différentes étapes du raffinage ont pour principal objectif d'éliminer les contaminants et les composants susceptibles d'entraver la suite du process ou de provoquer une altération de l'huile au stockage. La conséquence indirecte de ce traitement destiné à préserver la sécurité alimentaire est que les micronutriments d'intérêt sont partiellement éliminés réduisant ainsi la qualité nutritionnelle de l'huile. Dans une première partie, cette revue décrit la composition chimique de l'huile de tournesol en distinguant les composés recherchés et indésirables. La seconde partie examine le procédé de raffinage en suivant les pertes de micronutriments à chaque étape du procès ainsi que l'élimination des produits indésirables.
Ozone is a powerful and highly reactive oxidizing agent, which has found increasing applications in the field of grain processing. However, in some cases, O3 can potentially promote oxidation and/or degradation of the chemical constituents of grains. Experiments were carried out to evaluate the specific effects of gaseous ozone on the molecular properties of wheat grain proteins and their consequences on the bread-making quality of the resulting flours.Ozonation causes a significant reduction in the SDS solubility of the wheat prolamins, which can reasonably be attributed to conjugate effects of an increase in molecular dimensions and an increase in the compactness of the protein polymers initially present. In fact, our results demonstrate that this general reinforcement of the aggregative status of prolamins due to ozonation of wheat grains results from (i) the formation of new intermolecular S-S bonds, (ii) to a lesser extent, the formation of other types of intermolecular covalent cross-links (dityrosine cross-links) and finally, (iii) significant changes in secondary structure. By significantly affecting the molecular properties of wheat grain prolamins, ozone leads to profound changes in the rheological properties (i.e. increase in the tenacity and a great limitation of the extensibility) of the flours and/or doughs obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.