Early-life microbial exposure is of particular importance to growth, immune system development and long-lasting health. Hence, early microbiota composition is a promising predictive biomarker for health and disease but still remains poorly characterized in regards to susceptibility to diarrhoea. In the present study, we aimed to assess if gut bacterial community diversity and composition during the suckling period were associated with differences in susceptibility of pigs to post-weaning diarrhoea. Twenty piglets from 5 sows (4 piglets / litter) were weaned in poor housing conditions to challenge their susceptibility to post-weaning diarrhoea. Two weeks after weaning, 13 pigs exhibited liquid faeces during 2 or 3 days and were defined as diarrhoeic (D) pigs. The other 7 pigs did not have diarrhea during the whole post-weaning experimental periodand were defined as healthy (H) pigs. Using a molecular characterisation of fecal microbiota with CE-SSCP fingerprint, Next Generation Sequencing and qPCR, we show that D and H pigs were mainly discriminated as early as postnatal day (PND) 7, i.e. 4 weeks before post-weaning diarrhoea occurence. At PND 7 H pigs displayed a lower evenness and a higher abundance of Prevotellaceae, Lachnospiraceae, Ruminocacaceae and Lactobacillaceae compared to D pigs. The sPLS regression method indicates that these bacterial families were strongly correlated to a higher Bacteroidetes abundance observed in PND 30 H pigs one week before diarrhoea. These results emphasize the potential of early microbiota diversity and composition as being an indicator of susceptibility to post-weaning diarrhoea. Furthermore, they support the health promoting strategies of pig herds through gut microbiota engineering.
Aims: Aeromonas hydrophila is recognized as a human pathogen following wound exposure or ingestion of contaminated water and food. For rapid identification of this bacterium, a TaqMan‐based real‐time PCR assay has been developed. Methods and Results: Primers and probes that target specific sequences of the 16S rRNA gene and cytolytic enterotoxin gene (aerA) were combined in a duplex assay. Presence and size of PCR products were confirmed with microchannel fluidics electrophoresis analysis. After validation, using type strain CIP7614T DNA, the PCR assay was tested on 12 positive and negative controls. Twenty‐one Aeromonas strains were isolated from environmental samples and were identified with biochemical tests as Aer. sobria, Aer. caviae and Aer. hydrophila. Only Aer. hydrophila strains tested positive by PCR assay. Conclusions: The PCR developed here was successfully applied for the identification of Aer. hydrophila from reference, clinical and environmental samples and showed a high discrimination between Aer. hydrophila and other Aeromonas species. Significance and Impact of the Study: This molecular method is convenient, rapid (2·5 h vs 24 h), specific to identify Aer. hydrophila and usable for diagnosis in medical and veterinary laboratories.
Research on the impact of Maillard reaction products (MRPs) on microorganisms has been reported in the literature for the last 60 years. In the current study, the impact of an MRP-rich medium on the growth of three strains of Escherichia coli was measured by comparing two classic methods for studying the growth of bacteria (plate counting and optical density at 600 nm) and by tracing MRP utilisation. Early stage and advanced MRPs in the culture media were assessed by quantifying furosine and N (ε) -carboxymethyllysine (CML) levels, respectively, using chromatographic methods. These measures were performed prior to and during bacterial growth to estimate the potential use of these MRPs by Escherichia coli CIP 54.8. Glucose and lysine, the two MRP precursors used in the MRP-rich medium, were also quantified by chromatographic means. Compared to control media, increased lag phases and decreased growth rates were observed in the MRP-rich medium for two out of the three Escherichia coli strains tested. In contrast, one strain isolated from the faeces of a piglet fed on a MRP-rich diet was not influenced by the presence of MRPs in the medium. Overall, CML as well as the products obtained by the thermal degradation of glucose and lysine, regardless of the Maillard reaction, did not affect the growth of the three strains tested. In addition, no degradation of fructoselysine or CML was found in the presence of Escherichia coli CIP 54.8.
Rats and mice juvenile chronic ferric iron ingestion prevents colitis and dysbiosis at adulthood as assessed by the first interspecies comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.