The motion of air (i.e fluid) in which tiny particle rotates past a pointed surface of a rocket (as in space science), over a bonnet of a car and past a pointed surface of an aircraft is of important to experts in all these fields. Geometrically, all the domains of fluid flow in all these cases can be referred to as the upper horizontal surface of a paraboloid of revolution (uhspr). Meanwhile, the solution of the corresponding partial differential equation is an open question due to unavailability of suitable similarity variable to non-dimensionalize the angular momentum equation. This article unravels the nature of skin friction coefficient, heat transfer rate, velocity, temperature, concentration of homogeneous bulk fluid and heterogeneous catalyst which exists on a stretchable surface which is neither a perfect horizontal/vertical nor inclined/cone. Theory of similarity solution was adopted to obtain the similarity variable suitable to scale the proposed angular momentum equation. These equations along with the boundary conditions are solved numerically using Runge-Kutta technique along with shooting method. The similarity variable successfully nondimensionalized and parameterized the angular momentum for boundary layer flow past uhspr. Temperature dependent dynamic viscosity parameter increases vertical velocity near a free stream but reduces micro-rotation near uhspr. Effect of thermal radiation parameter on temperature profile and heat transfer rate can be greatly influenced by thickness parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.