Here we present a CdS quantum dot sensitized solar cell based on a mesoporous TiO2 film with remarkable stability using I−/I3
− electrolyte. Chemical Bath Deposition (CBD) was used to deposit the CdS quantum dots within the porous network. We show that a thin coating of the QD sensitized film with an amorphous TiO2 layer strongly improves the performance and photostability of the solar cell. We propose that the coating passivates QD surface states which act as hole traps and are responsible for photodegradation of the device. In addition, this coating decreases the recombination of electrons from the CdS quantum dots and the mesoporous TiO2 into the electrolyte solution. We obtain a significant improvement of all cell parameters resulting in a total light to electric power conversion efficiency of 1.24%.
Here, a new method based on sol–gel electrophoretic deposition to produce uniform high‐quality inorganic conformal coatings on mesoporous nano‐particulate films is presented. This novel sol preparation method allows for very fine control of the coating properties, thus inducing new adjustable functionalities to these electrodes. It is shown that the deposition of an amorphous TiO2 and/or MgO shell onto photoanodes used in dye‐sensitized solar cells (DSSCs) improves their light‐to‐electric‐power conversion efficiency without the need for sintering. It is proposed that the amorphous TiO2 coating improves the electronic inter‐particle connection and passivates the surface states. The insulating MgO coating further reduces the electron transfer from the conduction band into the electrolyte while the electron injection from the excited dye state remains unperturbed for thin coatings. Using a low‐temperature method for DSSC production on plastic substrates, a maximum efficiency of 6.2% applying pressure together with an optimized TiO2 coating is achieved. For systems that cannot be pressed a conversion efficiency of 5.1% is achieved using a double shell TiO2/MgO coating.
Quantum dot sensitized solar cells (QDSSCs) present a promising technology for next generation photovoltaic cells, having exhibited a considerable leap in performance over the last few years. However, recombination processes occurring in parallel at the TiO(2)-QDs-electrolyte triple junction constitute one of the major limitations for further improvement of QDSSCs. Reaching higher conversion efficiencies necessitates gaining a better understanding of the mechanisms of charge recombination in these kinds of cells; this will essentially lead to the development of new solutions for inhibiting the described losses. In this study we have systematically examined the contribution of each interface formed at the triple junction to the recombination of the solar cell. We show that the recombination of electrons at the TiO(2)/QDs interface is as important as the recombination from TiO(2) and QDs to the electrolyte. By applying conformal MgO coating both above and below the QD surface, recombination rates were significantly reduced, and an improvement of more than 20% in cell efficiency was recorded.
A new type of high surface area TiO(2) electrode for DSSCs is proposed. The new electrode consists of a transparent conductive nanoporous matrix that is coated with a thin layer of TiO(2). This design ensures a distance of several nanometers between the TiO(2)-electrolyte interface and the current collector throughout the nanoporous electrode, in contrast to several micrometers associated with the standard electrode. In addition the new electrode contains inherent screening capability due to the high doping level of the conducting core matrix. Theoretically, this electrode should overcome the collection and image field problems associated with solid-state DSSCs. Using a flat analogue of the new electrode we show that unless the TiO(2) coating is thicker than 6 nm, the electrode performance is very low due to fast recombination. Two mechanisms for the thickness effect on the recombination rate, that are proposed, provide new insight to the DSSC operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.