Uncaria species are used in traditional medicine and are considered of high therapeutic value and economic importance. This work describes the assembly and annotation of the chloroplast genomes of U. guianensis and U. tomentosa, as well as a comparative analysis. The genomes were sequenced on MiSeq Illumina, assembled with NovoPlasty, and annotated using CHLOROBOX GeSeq. Addictionaly, comparative analysis were performed with six species from NCBI databases and primers were designed in Primer3 for hypervariable regions based on the consensus sequence of 16 species of the Rubiaceae family and validated on an in-silico PCR in OpenPrimeR. The genome size of U. guianensis and U. tomentosa was 155,505 bp and 156,390 bp, respectively. Both Species have 131 genes and GC content of 37.50%. The regions rpl32-ccsA, ycf1, and ndhF-ccsA showed the three highest values of nucleotide diversity within the species of the Rubiaceae family and within the Uncaria genus, these regions were trnH-psbA, psbM-trnY, and rps16-psbK. Our results indicates that the primer of the region ndhA had an amplification success for all species tested and can be promising for usage in the Rubiaceae family. The phylogenetic analysis recovered a congruent topology to APG IV. The gene content and the chloroplast genome structure of the analyzed species are conserved and most of the genes are under negative selection. We provide the cpDNA of Neotropical Uncaria species, an important genomic resource for evolutionary studies of the group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.