This paper presents the vicarious calibration results of Landsat 8 OLI that were obtained using the reflectance-based approach at test sites in Nevada, California, Arizona, and South Dakota, USA. Additional data were obtained using the Radiometric Calibration Test Site, which is a suite of instruments located at Railroad Valley, Nevada, USA. The results for the top-of-atmosphere spectral radiance show an average difference of −2.7, −0.8, 1.5, 2.0, 0.0, 3.6, 5.8, and 0.7% in OLI bands 1-8 as compared to an average of all of the ground-based measurements. The top-of-atmosphere spectral reflectance shows an average difference of 1.6, 1.3, 2.0, 1.9, 0.9, 2.1, 3.1, and 2.1% from the ground-based measurements. Except for OLI band 7, the spectral radiance results are generally within ±5% of the design specifications, and the reflectance results are generally within ±3% of the design specifications. The results from the data collected during the tandem Landsat 7 and 8 flight in March 2013 indicate that ETM+ and OLI agree to each other to within ±2% in similar bands in top-of-atmosphere spectral radiance, and to within ±4% in top-of-atmosphere spectral reflectance. OPEN ACCESSRemote Sens. 2015, 7 601
This study evaluates the radiometric consistency between Landsat-8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) using cross calibration techniques. Two approaches are used, one based on cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event on 29-30 March 2013. The other approach is based on using time series of image statistics acquired by these two sensors over the Libya 4 pseudo invariant calibration site (PICS) (+28.55°N, +23.39°E). Analyses from these approaches show that the reflectance calibration of OLI is generally within ±3% of the ETM+ radiance calibration for all the reflective bands from visible to short wave infrared regions when the ChKur solar spectrum is used to convert the ETM+ radiance to reflectance. Similar results are obtained comparing the OLI radiance calibration directly with the ETM+ radiance calibration and the results in these two different physical units (radiance and reflectance) agree to within ±2% for all the analogous bands. OPEN ACCESSRemote Sens. 2014, 6 12620 These results will also be useful to tie all the Landsat heritage sensors from Landsat 1 MultiSpectral Scanner (MSS) through Landsat-8 OLI to a consistent radiometric scale.
This study provides a baseline quality check on provisional Landsat Surface Reflectance (SR) products as generated by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software. Characterization of the Landsat SR products leveraged comparisons between aerosol optical thickness derived from LEDAPS and measured by Aerosol Robotic Network (AERONET), as well as reflectance correlations with field spectrometer and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results consistently indicated similarity between LEDAPS and alternative data products in longer wavelengths over vegetated areas with no adjacent water, while less reliable performance was observed in shorter wavelengths and sparsely vegetated areas. This study demonstrates the strengths and weaknesses of the atmospheric correction methodology used in LEDAPS, confirming its successful implementation to generate Landsat SR products.
The Sentinel-2A and Landsat-8 satellites carry on-board moderate resolution multispectral imagers for the purpose of documenting the Earth's changing surface. Though they are independently built and managed, users will certainly take advantage of the opportunity to have higher temporal coverage by combining the datasets. Thus it is important for the radiometric and geometric calibration of the MultiSpectral Instrument (MSI) and the Operational Land Imager (OLI) to be compatible. Cross-calibration of MSI to OLI has been accomplished using multiple techniques involving the use of pseudo-invariant calibration sites (PICS) using direct comparisons as well as through use of PICS models predicting top-ofatmosphere reflectance. A team from the University of Arizona is acquiring field data under both instruments for vicarious calibration of the sensors. This paper shows that the work done to date by the Landsat and Sentinel-2 calibration teams has resulted in stable radiometric calibration for each instrument and consistency to~2.5% between the instruments for all the spectral bands that the instruments have in common.
Abstract:The Thermal Infrared Sensor (TIRS) for the Landsat 8 platform was designed and built at NASA Goddard Space Flight Center (GSFC). TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. The two-band (10.9 and 12.0 μm) pushbroom sensor with a 185 km-wide swath uses a staggered arrangement of quantum well infrared photodetector (QWIPs) arrays. The required spatial resolution is 100 m for TIRS, with the assessment of crop moisture and water resources being science drivers for that resolution. The evaluation of spatial resolution typically relies on a straight knife-edge technique to determine the spatial edge response of a detector system, and such an approach was implemented for TIRS. Flexibility in the ground calibration equipment used for TIRS thermal-vacuum chamber testing also made possible an alternate strategy that implemented a circular target moved in precise sub-pixel increments across the detectors to derive the edge response. On-orbit, coastline targets were developed to evaluate the spatial response performance. Multiple targets were identified that produced similar results to one another. Even though there may be a slight bias in the point spread function (PSF)/modulation transfer function (MTF) estimates towards poorer performance using this approach, it does have the ability to track relative changes for
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.