Global maps of land cover and leaf area index (LAI) derived from the Moderate Resolution Imaging Spectrometer (MODIS) reflectance data are an important resource in studies of global change, but errors in these must be characterized and well understood. Product validation requires careful scaling from ground and related measurements to a grain commensurate with MODIS products. We present an updated BigFoot project rotocol S for developing 25-m validation data layers over 49-km study areas. Results from comparisons of MODIS and BigFoot land cover and LA1 products at nine contrasting sites are reported. In terms of proportional coverage, MODIS and BigFoot land cover were in close agreement at six sites. The largest differences were at low tree cover evergreen needleleaf sites and at an Arctic tundra site where the MODIS product overestimated woody cover proportions. At low leaf biomass sites there was reasonable agreement between MODIS and BigFoot LA1 products, but there was not a particular MODIS LA1 algorithm pathway that consistently compared most favorably. At high leaf biomass sites, MODIS LA1 was generally overpredicted by a significant amount. For evergreen needleleaf sites, LA1 seasonality was exaggerated by MODIS. Our results suggest incremental improvement from Collection 3 to Collection 4 MODIS products, with some remaining problems that need to be addressed.
This study provides a baseline quality check on provisional Landsat Surface Reflectance (SR) products as generated by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software. Characterization of the Landsat SR products leveraged comparisons between aerosol optical thickness derived from LEDAPS and measured by Aerosol Robotic Network (AERONET), as well as reflectance correlations with field spectrometer and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results consistently indicated similarity between LEDAPS and alternative data products in longer wavelengths over vegetated areas with no adjacent water, while less reliable performance was observed in shorter wavelengths and sparsely vegetated areas. This study demonstrates the strengths and weaknesses of the atmospheric correction methodology used in LEDAPS, confirming its successful implementation to generate Landsat SR products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.