Abundant experimental data suggest that an endogenous digitalislike factor is responsible for some essential hypertension. Some forms of hypertension have also been associated with increased levels of catecholamines. We therefore designed experiments to investigate the role of digitalislike factors in the regulation of norepinephrine turnover in the neurovascular junction. We chose bufalin, an amphibian-derived compound that shares many of the physiological properties postulated as characteristic of digitalislike compounds, as a model of the mammalian compound. In vitro experiments in canine saphenous veins showed that, in addition to inhibiting norepinephrine uptake, bufalin increased norepinephrine overflow by an amount larger than could be explained solely by uptake inhibition. The effect of bufalin on norepinephrine overflow is inhibited by tetrodotoxin, which suggests a dependence of this response on Na + influx through the neuronal membranes. We propose that Na + ,K + -ATPase inhibition resulting in neuronal depolarization is responsible for the augmented norepinephrine turnover caused by bufalin and that these indirect effects of norepinephrine on the cardiovascular system may play a role in the etiology of hypertension. (Hypertension 1991;18:516-522)
L929 murine fibroblast cells were exposed to radiofrequency (RF) radiation from a time division multiple access wireless phone operating at 835 MHz frequency to determine the effect of RF-radiation energy emitted by wireless phones on ornithine decarboxylase (ODC) activity in cultured cells. Exposure was for 8 h to an average specific absorption rate (SAR) from <1 W/kg up to 15 W/kg. After exposure, cells were harvested and ODC activity was measured. No statistically significant difference in ODC activity was found between RF-radiation-exposed and sham-exposed cells at non-thermal specific absorption rates. At SARs which resulted in measurable heating of the medium, a dose-dependent decrease in enzymatic activity was observed and was shown to be consistent with a comparable decrease caused by non-RF-radiation heating. Thus we observed only the well-known enzyme inhibition due to heating, rather than the previously reported enhancement attributed to RF-radiation exposure.
Epidural anaesthesia attenuates the catecholamine response to hypoventilationThe effect of a high epidural block on the catecholamine response to hypoventilation was studied in six unanaesthetized dogs given intravenous sufentanil (15 I~g" kg-I .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.