We have known for many years that estrogen is more than the female hormone. It is essential in the male gonads, and in both sexes, estrogen has functions in the skeleton and central nervous system, on behavior, and in the cardiovascular and immune systems. An important aspect of the discovery of estrogen receptor (ER) beta is that the diverse functions of estrogen can now be divided into those mediated by ERalpha and those mediated by ERbeta. Pharmacological exploitation of this division of the labors of estrogen is facilitated by the ligand-binding specificity and selective tissue distribution of the two ERs. Because the ligand binding domains of ERalpha and ERbeta are significantly different from each other, selective ligands can be (and have been) developed to target the estrogenic pathway that is malfunctioning, without interfering with the other estrogen-regulated pathways. Because of the absence of ERbeta from the adult pituitary and endometrium, ERbeta agonists can be used to target ERbeta with no risk of adverse effects from chemical castration and uterine cancer. Some of the diseases in which there is hope that ERbeta agonists will be of benefit are prostate cancer, autoimmune diseases, colon cancer, malignancies of the immune system, and neurodegeneration.
The mitogenic effect of 17b-estradiol (E2) on the breast is mediated by estrogen receptor alfa (ERa), hence ERa antagonists are effective in the treatment of breast cancer. The possible use of estrogen receptor beta (ERb) as a target in treatment of breast cancer is under investigation. The mouse mammary cell line HC11 expresses both ERs and was used to study the role of the two receptors in proliferation. E2 had no effect on proliferation. The ERaselective agonist 4,4 0 ,4 00 -(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) stimulated proliferation. The ERb-selective agonist 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN) inhibited cell growth and induced apoptosis. PPT upregulated while DPN downregulated cyclin D1 and proliferating cell nuclear antigen (PCNA). Upon inhibition of ERa expression with RNA interference, E2 caused a decrease in cyclin D1 and PCNA, and increased apoptosis. When ERb expression was blocked, E2 induced proliferation and cells gained the capacity to grow in soft agar. In summary, in HC11 mammary epithelial cells, ERa drives proliferation in response to E2 while ERb is growth inhibitory. The lack of effect of E2 on HC11 cell growth is the result of the combined actions of ERa (proliferation) and ERb (apoptosis). We suggest that use of ERb agonists will be a useful addition in treatment of breast cancer, which, at present, is only aimed at inhibition of ERa. Oncogene (2005) 24, 6605-6616.
Introduction Mammary stem cells are bipotential and suggested to be the origin of breast cancer development, but are elusive and vaguely characterized. Breast tumors can be divided into subgroups, each one requiring specific treatment. To determine a possible association between mammary stem cells and breast cancer, a detailed characterization of the transcriptome in mammary stem cells is essential.
IntroductionThe inhibition of estrogen receptor (ER) α action with the ER antagonist tamoxifen is an established treatment in the majority of breast cancers. De novo or acquired resistance to this therapy is common. Expression of ERβ in breast tumors has been implicated as an indicator of tamoxifen sensitivity. The mechanisms behind this observation remain largely uncharacterized. In the present study, we investigated whether ERβ can modulate pathways implicated in endocrine resistance development.MethodsT47-D and MCF-7 ERα-expressing breast cancer cells with tetracycline-regulated expression of ERβ were used as a model system. Expression levels and activity of known regulators of endocrine resistance were analyzed by performing quantitative polymerase chain reaction assays, Western blot analysis and immunostaining, and sensitivity to tamoxifen was investigated by using a cell proliferation kit.ResultsExpression of ERβ in ERα-positive T47-D and MCF-7 human breast cancer cells resulted in a decrease in Akt signaling. The active form of an upstream regulator of Akt, proto-oncogene c-ErbB-2/receptor tyrosine kinase erbB-3 (HER2/HER3) receptor dimer, was also downregulated by ERβ. Furthermore, ERβ increased expression of the important inhibitor of Akt, phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Importantly, ERβ expression increased the sensitivity of these breast cancer cells to tamoxifen.ConclusionsOur results suggest a link between expression of ERβ and endocrine sensitivity by increasing PTEN levels and decreasing HER2/HER3 signaling, thereby reducing Akt signaling with subsequent effects on proliferation, survival and tamoxifen sensitivity of breast cancer cells. This study supports initiatives to further investigate whether ERβ presence in breast cancer samples is an indicator for endocrine response. Current therapies in ERα-positive breast cancers aim to impair ERα activity with antagonists or by removal of endogenous estrogens with aromatase inhibitors. Data from this study could be taken as indicative for also using ERβ as a target in selected groups of breast cancer.
Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERalpha and ERbeta). Estrogen-bound ERalpha induces proliferation of mammary epithelial and cancer cells, while ERbeta is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERbeta levels compared to the early stage breast cancers, suggesting that loss of ERbeta could be important in cancer development. Analysis of ERbeta-/- mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERbeta is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERalpha and ERbeta. As ERbeta is widely found in breast cancer but not in cell lines, we used ERalpha positive T47-D and MCF-7 human breast cancer cells to generate cells with inducible ERbeta expression. Furthermore, the colon cancer cell lines SW480 and HT-29 were also used. Integrin alpha1 mRNA and protein levels increased following ERbeta expression. Integrin beta1-the unique partner for integrin alpha1-increased only at the protein level. ERbeta expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERbeta increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERbeta expression was associated to less cell migration. These results indicate that ERbeta affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.