This work studies the semantic representations learned by BERT for compounds, that is, expressions such as sunlight or bodyguard. We build on recent studies that explore semantic information in Transformers at the word level and test whether BERT aligns with human semantic intuitions when dealing with expressions (e.g., sunlight) whose overall meaning depends-to a various extent-on the semantics of the constituent words (sun, light). We leverage a dataset that includes human judgments on two psycholinguistic measures of compound semantic analysis: lexeme meaning dominance (LMD; quantifying the weight of each constituent toward the compound meaning) and semantic transparency (ST; evaluating the extent to which the compound meaning is recoverable from the constituents' semantics). We show that BERT-based measures moderately align with human intuitions, especially when using contextualized representations, and that LMD is overall more predictable than ST. Contrary to the results reported for 'standard' words, higher, more contextualized layers are the best at representing compound meaning. These findings shed new light on the abilities of BERT in dealing with fine-grained semantic phenomena. Moreover, they can provide insights into how speakers represent compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.