Radiation is the principal mode of heat transfer in furnaces. Models for gaseous radiative properties have been well-established for air combustion. However, there is uncertainty regarding their applicability to oxy−fuel conditions. In this paper, a new and complete set of weighted sum of gray gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air−fuel and oxy−fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition using the exponential wide band model (EWBM), and the calculated results are validated in detail against data in the literature. Then, the validated code is used to generate emissivity databases for representative air- and oxy-firing conditions, for each of which a refined WSGGM with new parameters is derived. The practical way to implement the model to CFD simulations of combustion systems is given. Finally, as a demonstration, the new model is implemented to CFD modeling of two furnaces of very different beam lengths. The CFD results are compared to those based on the widely used WSGGM in the literature, from which some useful guidelines on oxy−fuel modeling are recommended.
The combustion process and soot formation in spark ignited spray guided stratified combustion of E85 was investigated in a single cylinder optical engine with direct injection of fuel using an outward opening piezo actuated injector. The effect of engine rotation frequency, fuel quantity, injection sequence and ignition timing was studied. Combustion, soot formation and soot oxidation was analysed using cylinder pressure measurements, images recorded using high speed video cameras, the flame emission spectrum and OH * chemiluminescence and soot incandescence imaging. A maximum injection duration was found to exist for direct ignition of the fuel spray. Engine rotation frequency had little effect on the initial and maximum rate of combustion. The maximum rate of combustion decreased with increasing cycle fuel mass when a single injection was used. The rate of combustion and indicated mean effective pressure increased and the combustion variability decreased when the single injection was split into multiple injections in close succession to deliver the same total fuel mass and the last fuel spray was ignited. Ignition of the first fuel spray resulted in a more pronounced change. The absence of soot incandescence during the initial flame propagation suggested flame propagation in a partially mixed fuel and air mixture with stoichiometric to fuel lean regions. A single fuel injection resulted in piston pool fires due to fuel spray impingement on the piston and was the primary source of soot formation. The pool fires persisted until after conditions favourable to oxidation of the soot had ended. Soot formation in the gas phase occurred while favourable soot oxidation conditions existed and was efficiently oxidized. The magnitude of the piston pool fires was reduced using multiple injections. The reduction is attributed to a reduction of the fuel spray penetration length and a smaller effective injection orifice area, resulting in a shorter total duration of fuel spray impingement on the piston crown. Soot formation occurred primarily in the gas phase when the first of two fuel sprays was ignited and persisted due to the second fuel spray entering an existing flame leading to fuel rich combustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.