Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.
Multiphoton ionization of potassium atoms with a sequence of two counter-rotating circularly polarized femtosecond laser pulses produces vortex-shaped photoelectron momentum distributions in the polarization plane describing Archimedean spirals. The pulse sequences are produced by polarization shaping and the three-dimensional photoelectron distributions are tomographically reconstructed from velocity map imaging measurements. We show that perturbative ionization leads to electron vortices with c_{6} rotational symmetry. A change from c_{6} to c_{4} rotational symmetry of the vortices is demonstrated for nonperturbative interaction.
Control of two basic ionization processes in dielectrics i.e. photo ionization and electron-electron impact ionization on intrinsic time and intensity scales is investigated experimentally and theoretically. Temporally asymmetric femtosecond pulses of identical fluence, spectrum and pulse duration result in different final free electron densities. We found that an asymmetric pulse and its time reversed counterpart address two ionization processes in a different fashion. This results in the observation of different thresholds for surface material modification in sapphire and fused silica. We conclude that control of ionization processes with tailored femtosecond pulses is suitable for robust manipulation of breakdown and thus control of the initial steps of laser processing of high band gap materials.
There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain twodimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.