Cardiac troponin T in serum appears to be a more sensitive indicator of myocardial-cell injury than serum creatine kinase MB activity, and its detection in the circulation may be a useful prognostic indicator in patients with unstable angina.
SummaryThis paper describes the genome sequence of M. thermoacetica (f. Clostridium thermoaceticum), which is the model acetogenic bacterium that has been widely used for elucidating the WoodLjungdahl pathway of CO and CO 2 fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into three mol of acetate and to grow autotrophically using H 2 and CO as electron donors and CO 2 as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO 2 . Acetogenic bacteria also couple the Wood-Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols, and aromatic compounds) and electron acceptors (CO 2 , nitrate, nitrite, thiosulfate, dimethylsulfoxide, and aromatic carboxyl groups). The genome consists of a single circular 2628784 bp chromosome encoding 2615 open reading frames, which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. Two thousand three hundred eighty-four (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in ortholog clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood-Ljungdahl pathway.
A five-gene "oxidative stress protection" cluster has recently been described from the strictly anaerobic, acetogenic bacterium, Moorella thermoacetica [Das, A., et al. (2001) J. Bacteriol. 183, 1560-1567]. Within this cluster are two cotranscribed genes, fprA (for A-type flavoprotein) and hrb (for high molecular weight rubredoxin) whose encoded proteins have no known functions. Here we show that FprA and Hrb are expressed in M. thermoacetica under normal anaerobic growth conditions and report characterizations of the recombinant FprA and Hrb. FprA contains flavin mononucleotide (FMN) and a non-heme diiron site. Mössbauer spectroscopy shows that the irons of the diferric site are antiferromagnetically coupled, implying a single-atom, presumably solvent, bridge between the irons. Hrb contains FMN and a rubredoxin-like [Fe(SCys)4] site. NADH does not directly reduce either the FMN or the diiron site in FprA, whereas Hrb functions as an efficient NADH:FprA oxidoreductase. Substitution of zinc for iron in Hrb completely abolished this activity. The observation that homologues of FprA from other organisms show O2 and/or anaerobic NO consumption activity prompted an examination of these activities for M. thermoacetica FprA. The Hrb/FprA combination does indeed have both NADH:O2 and NADH:NO oxidoreductase activities. The NO reductase activity, however, was significantly more efficient due to a lower Km for NO (4 M) and to progressive and irreversible inactivation of FprA during O2 reductase turnover but retention of activity during NO reductase turnover. Substitution of zinc for iron in FprA completely abolished these reductase activities. The stoichiometry of 1 mol of NADH oxidized:2 mol of NO consumed implies reduction to N2O. Fits of an appropriate rate law to the kinetics data are consistent with a mechanism in which 2NO's react at each FprA active site in the committed step. Expression of FprA in an Escherichia coli strain deficient in NO reductase restored the anaerobic growth phenotype of cultures exposed to otherwise toxic levels of exogenous NO. The accumulated results indicate that Hrb/FprA is fully capable of functioning in nitrosative stress protection in M. thermoacetica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.