Small drag-reducing riblets and larger drag-increasing ridges are longitudinally invariant and laterally periodic surface structures that differ only in the details of their lateral periodicity and their size in viscous units. Due to their different drag behaviour, typically riblets and ridges have been analysed separately. By studying experimentally trapezoidal-grooved surfaces of different sizes, we address systematically the transition from riblet-like to ridge-like behaviour in a unified framework. The structure height and lateral wavelength are varied both physically, by considering eight different surfaces, and in their viscous-scaled form, by spanning a wide range of bulk Reynolds number $Re_b$ . The effective skin-friction coefficient $C_f$ is determined via pressure-drop measurement in a turbulent channel flow facility designed for accurate drag measurements. An unexpectedly rich drag behaviour is unveiled, in which different drag regimes are distinguished depending on the value of $l_g^+$ , the viscous-scaled square root of the groove area. The well-known drag-reducing regime of riblets that spans up to $l_g^+=17$ is followed by a regime in which the roughness function ${\rm \Delta} U^+$ increases logarithmically with $l_g^+$ , indicating an apparent fully rough behaviour up to $l_g^+\approx 40$ . Further increase of $l_g^+$ leads to a clear departure from the fully rough regime, and an unexpected non-monotonic behaviour of the roughness function ${\rm \Delta} U^+$ for $50< l_g^+<200$ is reported for the first time. For sufficiently large $Re_b$ and $l_g$ , it is shown that a single parameter, similar to the classical hydraulic diameter, is sufficient to describe the drag behaviour of ridges. We find that an appropriate definition of the effective channel height is crucial for interpreting the drag behaviour. When the longitudinal protrusion height of the structured surface is accounted for in the channel height definition, a laminar flow exhibits the same $C_f(Re_b)$ relation known for flat surfaces. This approach thus allows us to discern the modification of $C_f$ induced by turbulence. We provide predictive correlations for the fully rough regime and the high Reynolds number range of trapezoidal-grooved surfaces that become possible thanks to the chosen channel height definition.
While existing engineering tools enable us to predict how homogeneous surface roughness alters drag and heat transfer of near-wall turbulent flows to a certain extent, these tools cannot be reliably applied for heterogeneous rough surfaces. Nevertheless, heterogeneous roughness is a key feature of many applications. In the present work we focus on spanwise heterogeneous roughness, which is known to introduce large-scale secondary motions that can strongly alter the near-wall turbulent flow. While these secondary motions are mostly investigated in canonical turbulent shear flows, we show that ridge-type roughness—one of the two widely investigated types of spanwise heterogeneous roughness—also induces secondary motions in the turbulent flow inside a combustion engine. This indicates that large scale secondary motions can also be found in technical flows, which neither represent classical turbulent equilibrium boundary layers nor are in a statistically steady state. In addition, as the first step towards improved drag predictions for heterogeneous rough surfaces, the Reynolds number dependency of the friction factor for ridge-type roughness is presented. Graphic abstract
The present work describes an experimental investigation that applies stereo particle image velocimetry in a cross-plane of a turbulent channel flow that is additionally perturbed by spanwise oscillatory body forces, induced by a plasma actuator and designed to mimic the effect of spanwise wall oscillations. The experiment is aimed at retrieving the forcing-correlated scales and the turbulent flow stochastic fluctuations for the measured cross-plane. The first are macroscopic scales and require a larger investigation domain while the latter benefit of a higher resolution. Furthermore, the extended flow-field dynamic range posed a challenge on the experiment design, finally leading to an optimal tradeoff. The results of the unactuated flow compare well to the direct numerical simulations of Hoyas and Jimenez ́ (2008), while the actuated case demonstrates strong near-wall momentum addition and spanwise modulation of the streamwise flow component.
A DNS parametric study of streamwise-aligned rectangular ridges is carried out in a fully developed turbulent channel flow with constant flow rate at Re b = 18000. The simulations were carried out systematically varying the ridge height h, width w and structural wavelength S. The ridges generate a strong large-scale secondary motion, which is measured in terms of the integral swirl strength. Of the presented cases, the configuration with the ridge height h = 0.1 δ, S/w = 4, S = 1 δ produces the strongest secondary flow of 4.5% U b. The varying flow topology is discussed as a result of the varying ridge dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.