Refined methods for the construction of a deterministic dynamical system which can consistently reproduce observed aperiodic data are discussed. The determination of the dynamics underlying a noisy chaotic time series suffers strongly from two systematic errors: One is a consequence of the so-called "error-in-variables problem." Standard least-squares fits implicitly assume that the independent variables are noise free and that the dependent variable is noisy. We show that due to the violation of this assumption one receives considerably wrong results for moderate noise levels. A straightforward modification of the cost function solves this problem. The second problem consists in a mutual inconsistency between the images of a point under the model dynamics and the corresponding observed values. For an improved fit we therefore introduce a multistep prediction error which exploits the information stored in the time series in a better way. The performance is demonstrated by several examples, including experimental data. (c) 1996 American Institute of Physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.