Markov decision processes (MDP) with finite state and action space have often been used to model sequential decision making over time in dairy herds. However, the length of each stage has been at least 1 mo, resulting in models that do not support decisions on a daily basis. The present paper describes the first step of developing an MDP model that can be integrated into a modern herd management system. A hierarchical MDP was formulated for the dairy cow replacement problem with stage lengths of 1 d. It can be used to assist the farmer in replacement decisions on a daily basis and is based on daily milk yield measurements that are available in modern milking systems. Bayesian updating was used to predict the performance of each cow in the herd and economic decisions were based on the prediction. Moreover, parameters in the model were estimated using data records of the specific herd under consideration. This includes herd-specific lactation curves.
We consider the problem of ranking assignments according to cost in the classical linear assignment problem. An algorithm partitioning the set of possible assignments, as suggested by Murty, is presented where, for each partition, the optimal assignment is calculated using a new reoptimization technique. Its computational performance is compared with all available implementations of algorithms with the same time complexity. The results are encouraging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.