The pacemaker activity in the mammalian gut is responsible for generating anally propagating phasic contractions. The cellular basis for this intrinsic activity is unknown. The smooth muscle cells of the external muscle layers and the innervated cellular network of interstitial cells of Cajal, which is closely associated with the external muscle layers of the mammalian gut, have both been proposed to stimulate pacemaker activity. The interstitial cells of Cajal were identified in the last century but their developmental origin and function have remained unclear. Here we show that the interstitial cells of Cajal express the Kit receptor tyrosine kinase. Furthermore, mice with mutations in the dominant white spotting (W) locus, which have cellular defects in haematopoiesis, melanogenesis and gametogenesis as a result of mutations in the Kit gene, also lack the network of interstitial cells of Cajal associated with Auerbach's nerve plexus and intestinal pacemaker activity.
Intracellular microelectrodes and organ bath techniques were used to study spontaneous cyclic electrical and mechanical activity in the rat colon. Electron microscopy and immunohistochemical studies showed two major populations of interstitial cells of Cajal (ICC): one associated with Auerbach's plexus (ICC-AP) and one with the submuscular plexus (ICC-SMP). The ICC-SMP network partly adhered to the submucosa when removed and was generally strongly damaged after separation of musculature and submucosa. Similarly, longitudinal muscle removal severely damaged AP. Two electrical and mechanical activity patterns were recorded: pattern A, low-frequency (0.5--1.5 cycles/min), high-amplitude oscillations; and pattern B, high-frequency (13--15 cycles/min), low-amplitude oscillations. Pattern A was recorded in preparations with intact AP but absent in those without intact AP. Pattern B was recorded in preparations with intact SMP but was absent in those lacking SMP. With full-thickness strips, the superimposed patterns A and B were recorded in circular muscle. When longitudinal muscle mechanical activity was recorded, only pattern A was present. We conclude that two pacemakers regulate rat colonic cyclic activity: the ICC-SMP network (responsible for cyclic slow waves and small-amplitude contractions) and the ICC-AP network (which may drive the cyclic depolarizations responsible for high-amplitude contractions). This is the first report showing consistent slow wave activity in the rodent colon.
The small intestine of W/Wv mice lacks both the network of interstitial cells of Cajal (ICC), associated with Auerbach's plexus, and pacemaker activity, i.e., it does not generate slow-wave-type action potentials. The W/Wv muscle preparations showed a wide variety of electrical activities, ranging from total quiescence to generation of action potentials at regular or irregular frequency with or without periods of quiescence. The action potentials consisted of a slow component with superimposed spikes, preceded by a slowly developing depolarization and followed by a transient hyperpolarization. The action potentials were completely abolished by L-type Ca2+ channel blockers. W/Wv mice responded to K+ channel blockade (0.5 mM Ba2+ or 10 mM tetraethylammonium chloride) with effects on amplitude, frequency, rate of rise, and duration of the action potentials. In quiescent tissues from W/Wv mice, K+ channel blockade evoked the typical spikelike action potentials. Electron microscopy identified few methylene blue-positive cells in the W/Wv small intestine associated with Auerbach's plexus as individual ICC. Numbers of resident macrophage-like cells (MLC) and fibroblast-like cells (FLC) were significantly changed. Neither FLC nor MLC were part of a network nor did they form specialized junctions with neighboring cells as ICC do. Hence no cell type had replaced ICC at their normal morphological position associated with Auerbach's plexus. ICC were present in W/Wv mice at the deep muscular plexus in normal organization and numbers, indicating that they are not dependent on the Kit protein and do not take part in generation of pacemaker activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.