The article presents the results of a survey on dictionary use in Europe, focusing on general monolingual dictionaries. The survey is the broadest survey of dictionary use to date, covering close to 10,000 dictionary users (and non-users) in nearly thirty countries. Our survey covers varied user groups, going beyond the students and translators who have tended to dominate such studies thus far. The survey was delivered via an online survey platform, in language versions specific to each target country. It was completed by 9,562 respondents, over 300 respondents per country on average. The survey consisted of the general section, which was translated and presented to all participants, as well as country-specific sections for a subset of 11 countries, which were drafted by collaborators at the national level. The present report covers the general section.
IntroductionResearch into dictionary use has become increasingly important in recent years. In contrast to 15 years ago, new findings in this area are presented every year, e.g. at every Euralex or eLex conference. These studies range from questionnaire or log file studies to smaller-scale studies focussing on eye tracking, usability, or other aspects of dictionary use measurable in a lab. For an overview of different studies,
This paper is a contribution to the discussion on compiling computational lexical resources from conventional dictionaries. It describes the theoretical as well as practical problems that are encountered when reusing a conventional dictionary for compiling a lexical-semantic resource in terms of a wordnet. More specifically, it describes the methodological issues of compiling a wordnet for Danish, DanNet, from a monolingual basis, and not-as is often seen-by applying the translational expansion method with Princeton WordNet as the English source. Thus, we apply as our basis a large, corpus-based printed dictionary of modern Danish. Using this approach, we discuss the issues of readjusting inconsistent and/or underspecified hyponymy hierarchies taken from the conventional dictionary, sense distinctions as opposed to the synonym sets of wordnets, generating semantic wordnet relations on the basis of sense definitions, and finally, supplementing missing or implicit information.
rispevek se osredotoča na preučitev razmerja med dnevniki iskanj uporabnikov po spletnem slovarju in korpusno pogostostjo besed. Študijo so spodbudila razmišljanja, ki so se porajala pri rednem slovarskem delu in jih lahko strnemo v vprašanje: kako ohranjati na korpusu temelječ slovar aktualen? Bi morala biti naslednja beseda, ki jo uvrstimo v slovar, tista, ki sledi zadnji uslovarjeni besedi na frekvenčnem seznamu besed iz korpusa? Ali bi morala biti to beseda, ki jo uporabniki najpogosteje neuspešno iščejo v slovarju? Da bi prišli do ustreznih kriterijev, so avtorji analizirali dnevnike iskanj uporabnikov danskega slovarja v obdobju od 2009 do 2012 in seznam najpogosteje iskanih besed primerjali z njihovo pogostostjo v korpusu. S proučitvijo iskalnih navad uporabnikov so avtorji želeli priti do odgovorov na sledeča vprašanja: Ali so v slovarju besede, ki jih uporabniki nikoli ne iščejo? Če je odgovor da, ali lahko na podlagi njihove pogostosti v korpusu opazimo kakšne smiselne vzorce – gre za besede iste besedne vrste, so besede zelo pogoste ali zelo redke, se pojavljajo v določenem frekvenčnem območju? Ugotovitev prispevka je, da je pogostost v korpusu dober kriterij za 20.000 najpogostejših iztočnic, medtem ko je treba pri manj pogostih besedah dodati še druge metode, med katerimi je tudi pregled iskanj uporabnikov, nadvse pomembna pa je tudi presoja leksikografov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.