Standard Form 298 (Rev. 8-98)Prescribed by ANSI Std. Z39.18Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
A ship's exhaust gas contains both hot gas molecules, which emit infrared radiation at specific wavelengths (line emitters), and soot particles which emit broad-banded, like a black body. Our modeling shows that the observed radiance from these emissions falls at different rates with distance. The attenuation of intensity is caused by absorption and scattering of the emitted radiation in the atmosphere. The hottest part of the exhaust plume is spatially confined to a relative small volume. Usually, a ship's hull and its superstructure have a higher temperature than the sky or sea background. The temperature difference is generally not very large. However, the ship has a spatial extent that is much larger than the plume's. In this work we study how both the emitted radiation from the plume and the ship's total signature decrease with increasing distance. This study is based on experimental data that was collected during a measurement campaign at the southwest coast of Norway. Shore-based digital IR cameras, both LWIR and MWIR, recorded image sequences of ships as they sailed away from close to shore (~ 1 km) in a zigzag pattern out to about 10 km. We used a statistical method to identify the gas cloud pixels and used their integrated radiance as a measure for the plume intensity. The ship signature is defined here as the integrated radiance over all the ship's pixels in the imagery. From infrared spectroscopic data, collected using a Fourier Transform Infrared spectrometer aimed at the ship's plume when the ship is close to shore, a model is obtained for the composition of the exhaust gas. This model was used to perform FASCODE simulations to study numerically the attenuation with distance of the plume radiance. Our work shows that this approach may be well suited to explain the observed signal decay rate with distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.