An intermolecular coupling of primary alcohols and organotriflates has been developed to provide ketones by the action of a Ni(0) catalyst. This oxidative transformation is proposed to occur by the union of three distinct catalytic cycles. Two competitive oxidation processes generate aldehyde in situ via hydrogen transfer oxidation or (pseudo)dehalogenation pathways. As aldehyde forms, a Ni-catalyzed carbonyl-Heck process enables formation of the key carbon–carbon bond. The utility of this rare alcohol to ketone transformation is demonstrated through the synthesis of diverse complex and bioactive molecules.
Plasmon hot carriers are interesting for photoredox chemical synthesis but their direct utilization is limited by their ultrafast thermalization. Therefore, they are often transferred to suitable accepting materials that expedite their lifetime. Solid-state photocatalysts are technologically more suitable than their molecular counterparts, but their photophysical processes are harder to follow due to the absence of clear optical fingerprints. Herein, the journey of hot electrons in a solidstate multimetallic photocatalyst is revealed by a combination of ultrafast visible and infrared spectroscopy. Dynamics showed that electrons formed upon silver plasmonic excitation reach the gold catalytic site within 700 fs and the electron flow could also be reversed. Gold is the preferred site until saturation of its 5d band occurs. Silver-plasmon hot electrons increased the rate of nitrophenol reduction 16-fold, confirming the preponderant role of hot electrons in the overall catalytic activity and the importance to follow hot carriers' journeys in solid-state photosystems.
The heterogenization of 2,6-dimethylarylimido–vanadium(V) dichloride via chemical tethering on insoluble silica supports is reported. The effects of the silica particle size, drying conditions, and the reaction time were investigated. The drying conditions of the support were found to be a crucial parameter: drying temperatures over 400 °C were needed to achieve successful catalysis. The supported catalytic systems were characterized by Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy–energy-dispersive X-ray (TEM-EDX), and inductively coupled plasma mass spectroscopy (ICP-MS), while the polymers were characterized by FT-IR, differential scanning calorimetry (DSC), and rheology. Ethylene polymerization tests were performed employing the prepared heterogenized catalysts with methylaluminoxane/diethylaluminum chloride as a cocatalyst. The supported catalyst precursor, when activated with diethylaluminum chloride, promotes the synthesis of polyethylene with seemingly controlled particle size in the absence of reactor fouling, suggesting the successful immobilization of the complex over the inert support. The resulting polymer shows features of ultrahigh-molecular-weight polyethylene (UHMWPE). These findings present a proof-of-concept for a new approach toward the heterogenization of arylimido–vanadium complexes.
Singlet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications. Cibalackrot is a historic and stable organic dye which, although it has been suggested to have ideal energetics, does not undergo singlet fission due to large interchromophore distances, as suggested by single crystal analysis. Thus, while the energetic alignment is satisfactory, the molecule does not have the desired intermolecular coupling. Herein, we improve this characteristic through molecular engineering with the first synthesis of an aza-cibalackrot and show, using ultrafast transient spectroscopy, that singlet fission is successfully “turned on.”
The formation of core-shell heterostructures allows direct contact for more efficient energy transfer and requires exquisite lattice match. Lattice mismatch is one of the most challenging obstacles for combining two components with different phases. In this work, we develop a strategy to successfully overcome the limitation of lattice mismatch for the first time andgrow α-phase lead halide perovskites (LHPs) onto β-phase lanthanide nanoparticles (LnNPs) by seeding ultrasmall sub-5 nm LnNPs. This LnNP@LHP heterostructure enables more efficient two-way energy transfer within the heterostructures. Downconversion and upconversion emissions can be achieved under ultraviolet and near-infrared excitation, respectively. In addition, LHP has a high tolerance for defects and will passivate LnNPs for enhanced fluorescent performance. We identify and prove that size instead of phase is critical to overcome the lattice mismatch. Our strategy has uncovered fresh insights into the key factor of direct epitaxial growth for heterostructures and we believe the current synthesis strategy for high-quality heterostructures will have strong application potential in optoelectronics, anticounterfeiting and light detection etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.