Detailed anatomical study supported the concept of mediocranial MU repositioning during corrective surgery, although the impact is minor to the levator muscle's action. Future mathematical models describing effects of such a maneuver should integrate surrounding structures.
Purpose
Decision support systems for mitral valve disease are an important step toward personalized surgery planning. A simulation of the mitral valve apparatus is required for decision support. Building a model of the chordae tendineae is an essential component of a mitral valve simulation. Due to image quality and artifacts, the chordae tendineae cannot be reliably detected in medical imaging.
Methods
Using the position-based dynamics framework, we are able to realistically simulate the opening and closing of the mitral valve. Here, we present a heuristic method for building an initial chordae model needed for a successful simulation. In addition to the heuristic, we present an interactive editor to refine the chordae model and to further improve pathology reproduction as well as geometric approximation of the closed valve.
Results
For evaluation, five mitral valves were reconstructed based on image sequences of patients scheduled for mitral valve surgery. We evaluated the approximation of the closed valves using either just the heuristic chordae model or a manually refined model. Using the manually refined models, prolapse was correctly reproduced in four of the five cases compared to two of the five cases when using the heuristic. In addition, using the editor improved the approximation in four cases.
Conclusions
Our approach is suitable to create realistically parameterized mitral valve apparatus reconstructions for the simulation of normally and abnormally closing valves in a decision support system.
Cleft lip and palate reconstruction should reasonably use the uvular muscle to augment the velar midline bulk. Uvular muscle deformation calculation was successful, permitting functional insight on the basis of microanatomical specimens, so far a bigger complete velar model can be ventured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.