Multidimensional flow mapping can measure the paths, compartmentalization and kinetic energy changes of blood flowing into the LV, demonstrating differences of KE loss between compartments, and potentially between the flows in normal and dilated left ventricles.
Purpose: To determine the difference in flow patterns between healthy volunteers and ascending aortic aneurysm patients using time-resolved three-dimensional (3D) phase contrast magnetic resonance velocity (4D-flow) profiling.
Materials and Methods:4D-flow was performed on 19 healthy volunteers and 13 patients with ascending aortic aneurysms. Vector fields placed on 2D planes were visually graded to analyze helical and retrograde flow patterns along the aortic arch. Quantitative analysis of the pulsatile flow was carried out on manually segmented planes.
Results:In volunteers, flow progressed as follows: an initial jet of blood skewed toward the anterior right wall of the ascending aorta is reflected posterolaterally toward the inner curvature creating opposing helices, a right-handed helix along the left wall and a left-handed helix along the right wall; retrograde flow occurred in all volunteers along the inner curvature between the location of the two helices. In the aneurysm patients, the helices were larger; retrograde flow occurred earlier and lasted longer. The average velocity decreased between the ascending aorta and the transverse aorta in volunteers (47.9 mm/second decrease, P ϭ 0.023), while in aneurysm patients the velocity increased (145 mm/second increase, P Ͻ 0.001).
Conclusion:Dilation of the ascending aorta skews normal flow in the ascending aorta, changing retrograde and helical flow patterns.
A conventional 3D phase contrast acquisition generates images with good spatial resolution, but often gives rise to artifacts due to pulsatile flow. 2D cine phase contrast, on the other hand, can register dynamic flow, but has a poor spatial resolution perpendicular to the imaging plane. A combination of both high spatial and temporal resolution may be advantageous in some cases, both in quantitative flow measurements and in MR angiography. The described 3D cine phase contrast pulse sequence creates a temporally resolved series of 3D data sets with velocity encoded data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.