Objective— Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Approach and Results— Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Conclusions— Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins.
Over the past decade, studies have repeatedly found single-nucleotide polymorphisms located in the collagen ( COL) 4A1 and COL4A2 genes to be associated with cardiovascular disease (CVD), and the 13q34 locus harboring these genes is one of ~160 genome-wide significant risk loci for coronary artery disease. COL4A1 and COL4A2 encode the α- and α-chains of collagen type IV, a major component of basement membranes in various tissues including arteries. Despite the growing body of evidence indicating a role for collagen type IV in CVD, remarkably few studies have aimed to directly investigate such a role. The purpose of this review is to summarize the clinical reports linking 13q34 to coronary artery disease, atherosclerosis, and artery stiffening and to assemble the scattered pieces of evidence from experimental studies based on vascular cells and tissue collectively supporting a role for collagen type IV in atherosclerosis and other macrovascular disease conditions.
Background and aims: Hyperlipidemia is a suggested risk factor for abdominal aortic aneurysm (AAA). However, whether hyperlipidemia is causally involved in AAA progression remains elusive. Here, we tested the hypothesis that hyperlipidemia aggravates AAA formation in the widely used porcine pancreatic elastase (PPE) model of AAA in mice with varying levels of plasma lipids. Methods: Prior to PPE-surgery, 8-week-old male C57BL/6J mice (n = 32) received 1⋅10 11 viral genomes of rAAV8-D377Y-mPcsk9 or control rAAV8 via the tail vein. Mice were fed either western type diet or regular chow. At baseline and during the 28 days following PPE-surgery, mice underwent weekly ultrasonic assessment of AAA progression. Experiments were repeated using Apolipoprotein E knockout (ApoE − /− ) mice (n = 7) and wildtype C57BL/6J mice (n = 5). Results: At sacrifice, maximal intergroup plasma cholesterol and non-HDL/HDL ratio differences were >5-fold and >20-fold, respectively. AAA diameters expanded to 150% of baseline, but no intergroup differences were detected. This was verified in an independent experiment comparing 8-week-old male ApoE − /− mice with wildtype mice. Histological evaluation of experimental AAA lesions revealed accumulated lipid in neointimal and medial layers, and analysis of human AAA lesions (n = 5) obtained from open repair showed medial lipid deposition. Conclusions: In summary, we find that lipid deposition in the aortic wall is a feature of PPE-induced AAA in mice as well as human AAA lesions. Despite, our data do not support the hypothesis that hyperlipidemia contributes to AAA progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.