Worldwide, enteric infections rank third among all causes of disease burdens, and vaccines able to induce a strong and long-lasting intestinal immune responses are needed. Parenteral immunization generally do not generate intestinal IgA. Recently, however, injections of retinoic acid (RA) dissolved in oil, administered multiple times before vaccination to precondition the vaccine-draining lymph nodes, enabled a parenteral vaccine strategy to induce intestinal IgA. As multiple injections of RA before vaccination is not an attractive strategy for clinical practice, we aimed to develop a "one injection" vaccine formulation that upon parenteral administration induced intestinal IgA. Our vaccine formulation contained two liposomal delivery systems. One delivery system, based on 1,2-distearoyl-sn-glycero-3-phosphocholine stabilized with PEG, was designed to exhibit fast drainage of RA to local lymph nodes to precondition these for a mucosal immune response before being subjected to the vaccine antigen. The other delivery system, based on the cationic liposomal adjuvant CAF01 stabilized with cholesterol, was optimized for prolonged delivery of the antigen by migratory antigen-presenting cells to the preconditioned lymph node. Combined we call the adjuvant CAF23. We show that CAF23, administered by the subcutaneous route induces an antigen specific intestinal IgA response, making it a promising candidate adjuvant for vaccines against enteric diseases.
Streptococcus pyogenes (group A streptococcus, GAS) is responsible for a wide array of infections. Respiratory transmission via droplets is the most common mode of transmission but it may also infect the host via other routes such as lesions in the skin. To advance the development of a future vaccine against GAS, it is therefore important to investigate how protective immunity is related to the route of vaccine administration. To explore this, we examined whether a parenterally administered anti-GAS vaccine could protect against an intranasal GAS infection or if this would require locally primed immunity. We foundd that a parenteral CAF01 adjuvanted GAS vaccine offered no protection against intranasal infection despite inducing strong systemic Th1/Th17/IgG immunity that efficiently protected against an intraperitoneal GAS infection. However, the same vaccine administered via the intranasal route was able to induce protection against repeated intranasal GAS infections in a murine challenge model. The lack of intranasal protection induced by the parenteral vaccine correlated with a reduced mucosal recall response at the site of infection. Taken together, our results demonstrate that locally primed immunity is important for the defense against intranasal infection with Streptococcus pyogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.