Current approaches have limitations in providing insight into the functional properties of particular nucleosomes in their native molecular environment. Here we describe a simple and powerful method involving elution of histones using intercalators or salt, to assess stability features dependent on DNA superhelicity and relying mainly on electrostatic interactions, respectively, and measurement of the fraction of histones remaining chromatin-bound in the individual nuclei using histone type- or posttranslational modification- (PTM-) specific antibodies and automated, quantitative imaging. The method has been validated in H3K4me3 ChIP-seq experiments, by the quantitative assessment of chromatin loop relaxation required for nucleosomal destabilization, and by comparative analyses of the intercalator and salt induced release from the nucleosomes of different histones. The accuracy of the assay allowed us to observe examples of strict association between nucleosome stability and PTMs across cell types, differentiation state and throughout the cell-cycle in close to native chromatin context, and resolve ambiguities regarding the destabilizing effect of H2A.X phosphorylation. The advantages of the in situ measuring scenario are demonstrated via the marked effect of DNA nicking on histone eviction that underscores the powerful potential of topological relaxation in the epigenetic regulation of DNA accessibility.
Retinoids are morphogens and have been implicated in cell fate commitment of embryonic stem cells (ESCs) to neurons. Their effects are mediated by RAR and RXR nuclear receptors. However, transcriptional cofactors required for cell and gene-specific retinoid signaling are not known. Here we show that protein arginine methyl transferase (PRMT) 1 and 8 have key roles in determining retinoid regulated gene expression and cellular specification in a multistage neuronal differentiation model of murine ESCs. PRMT1 acts as a selective modulator, providing the cells with a mechanism to reduce the potency of retinoid signals on regulatory "hotspots." PRMT8 is a retinoid receptor target gene itself and acts as a cell type specific transcriptional coactivator of retinoid signaling at later stages of differentiation. Lack of either of them leads to reduced nuclear arginine methylation, dysregulated neuronal gene expression, and altered neuronal activity. Importantly, depletion of PRMT8 results in altered expression of a distinct set of genes, including markers of gliomagenesis. PRMT8 is almost entirely absent in human glioblastoma tissues. We propose that PRMT1 and PRMT8 serve as a rheostat of retinoid signaling to determine neuronal cell specification in a context-dependent manner and might also be relevant in the development of human brain malignancy. STEM CELLS 2015;33:726-741
By using a microscopic approach, field inversion single-cell gel electrophoresis, we show that preformed single-strand discontinuities are present in the chromatin of resting and proliferating mammalian and yeast cells. These single-strand breaks are primarily nicks positioned at Ϸ50-kbp intervals throughout the entire genome that could be efficiently labeled in situ by DNA polymerase I holoenzyme but not by Klenow fragment and terminal transferase unless after ribonucleolytic treatments. The RNA molecules involved appear to comprise R-loops, recognized by the S9.6 RNA/DNA hybrid-specific antibody. By using the breakpoint cluster region of the Mixed Lineage Leukemia (MLL) gene as a model, we have found that the number of manifest nicks detected by FISH performed after field inversion single-cell gel electrophoresis depends on epigenetic context, but the difference between germ-line and translocated MLL alleles is abolished by protease treatment. Our data imply that the double-stranded genomic DNA is composed of contiguous rather than continuous single strands and reveal an aspect of higher-order chromatin organization with ribonucleoprotein-associated persistent nicks defining Ϸ50-kbp domains.chromatin loop ͉ RNA/DNA hybrid ͉ translocation T he concept that eukaryotic chromatin is organized into Ϸ30-to 150-kbp units anchored to a ribonucleoprotein-containing structure, the enigmatic nuclear matrix/scaffold, has stemmed from microscopic observations of DNA loops emanating from histone-depleted nuclei (for review, see ref 1). Chromatin appears to bind matrix elements through special, although heterogeneous, DNA sequences, scaffold/matrix attachment regions (S/MARs), that remain attached to the remnants of saltextracted nuclei (nuclear halos) and are thought to represent the boundaries of supercoiled 20-to 150-kbp looped domains (2). Consistent with this model of chromosome architecture, chromatin fragmentation phenomena have been observed that involve the preferential cleavage of DNA, presumably at the bases of loops (3). The global disassembly of chromatin to highmolecular-weight (Ն20-kbp) units also takes place upon alkali denaturation after proteinase digestion (4), at exposure to single-strand (ss)-specific nuclease (5), in the early stage of apoptotic DNA fragmentation (6), as well as in the case of healthy nonapoptotic mammalian and yeast cells upon various protein denaturing treatments (7,8). The DNase I hypersensitivity of mammalian chromatin at every Ϸ50 kbp (9), also detected in the vicinity of certain S/MARs (10), points to the special vulnerability of the DNA at the borders of supernucleosomal units of this size. The above data raise the question whether special base-unpaired secondary structures or perhaps regularly spaced stably maintained ss discontinuities constitute the predilection points of Ϸ50-kbp chromatin fragmentation, delimiting higher-order domains. To tackle this issue, based on the conventional comet assay (11), we have developed a microscopic approach, field inversion single-cell gel el...
Bone morphogenetic protein-2 (BMP-2), is a potential factor to enhance osseointegration of dental implants. However, the appropriate cellular system to investigate the osteogenic effect of BMP-2 in vitro in a standardized manner still needs to be defined. The aim of this study was to examine the effect of BMP-2 on the cell proliferation and osteogenic differentiation of human osteogenic progenitors of various origins: dental pulp stem cells (DPSC), human osteosarcoma cell line (Saos-2) and human embryonic palatal mesenchymal cell line (HEPM). For induction of osteogenic differentiation, cell culture medium was supplemented with BMP-2 homodimer alone or in combination with conventionally used differentiation inducing agents. Differentiation was monitored for 6–18 days. To assess differentiation, proliferation rate, alkaline phosphatase activity, calcium deposition and the expression level of osteogenic differentiation marker genes (Runx2, BMP-2) were measured. BMP-2 inhibited cell proliferation in a concentration and time-dependent manner. In a concentration which caused maximal cell proliferation, BMP-2 did not induce osteogenic differentiation in any of the tested systems. However, it had a synergistic effect with the osteoinductive medium in both DPSC and Saos-2, but not in HEPM cells. We also found that the differentiation process was faster in Saos-2 than in DPSCs. Osteogenic differentiation could not be induced in the osteoblast progenitor HEPM cells. Our data suggest that in a concentration that inhibits proliferation the differentiation inducing effect of BMP-2 is evident only in the presence of permissive osteoinductive components. β-glycerophosphate, was identified interacting with BMP-2 in a synergistic manner.
The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.