We consider the problem of fuzzy community detection in networks, which complements and expands the concept of overlapping community structure. Our approach allows each vertex of the graph to belong to multiple communities at the same time, determined by exact numerical membership degrees, even in the presence of uncertainty in the data being analyzed. We create an algorithm for determining the optimal membership degrees with respect to a given goal function. Based on the membership degrees, we introduce a measure that is able to identify outlier vertices that do not belong to any of the communities, bridge vertices that have significant membership in more than one single community, and regular vertices that fundamentally restrict their interactions within their own community, while also being able to quantify the centrality of a vertex with respect to its dominant community. The method can also be used for prediction in case of uncertainty in the data set analyzed. The number of communities can be given in advance, or determined by the algorithm itself, using a fuzzified variant of the modularity function. The technique is able to discover the fuzzy community structure of different real world networks including, but not limited to, social networks, scientific collaboration networks, and cortical networks, with high confidence.
Dopaminergic transmission within limbic regions of the brain is highly dependent on the regulation of D2 receptor activity. Here we show that the neuronal calcium sensor-1 (NCS-1) can mediate desensitization of D2 dopamine receptors. Analysis of D2 receptors expressed in human embryonic kidney 293 cells indicates that NCS-1 attenuates agonist-induced receptor internalization via a mechanism that involves a reduction in D2 receptor phosphorylation. This effect of NCS-1 was accompanied by an increase in D2 receptor-mediated cAMP inhibition after dopamine stimulation. The ability of NCS-1 to modulate D2 receptor signaling was abolished after a single amino acid mutation in NCS-1 that has been shown to impair the calcium-binding properties of NCS-1. Coimmunoprecipitation experiments from striatal neurons reveal that NCS-1 is found in association with both the D2 receptor and G-protein-coupled receptor kinase 2, a regulator of D2 receptor desensitization. Colocalization of NCS-1 and D2 receptors was examined in both primate and rodent brain. In striatum, NCS-1 and D2 receptors were found to colocalize within sites of synaptic transmission and in close proximity to intracellular calcium stores. NCS-1-D2 receptor interaction may serve to couple dopamine and calcium signaling pathways, thereby providing a critical component in the regulation of dopaminergic signaling in normal and diseased brain.
SUMMARY Studies of resting state activity in the brain have provoked critical questions about the brain’s functional organization but, its biological basis is not clear. Specifically, the relationships between interregional correlations in resting state measures of activity, neuronal functional connectivity and anatomical connectivity are much debated. To investigate these relationships, we have examined both anatomical and steady state functional connectivity within the hand representation of primary somatosensory cortex (areas 3b and 1) in anesthetized squirrel monkeys. The comparison of three data sets (fMRI, electrophysiological, anatomical) indicate two primary axes of information flow within SI: prominent interdigit interactions within area 3b and predominantly homotopic interactions between area 3b and area 1. These data support a strikingly close relationship between baseline functional connectivity and anatomical connections. This study is also the first to extend findings derived from large-scale cortical networks to the realm of local mm-scale networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.