Natural recombinant Plum pox virus (PPV) isolates were detected in Albania, Bulgaria, Czech Republic, Germany, Hungary and Slovakia. Despite different geographical origins and dates of isolation, all the recombinant isolates were closely related at the molecular level and shared the same recombination breakpoint as well as a typical signature in their N-terminal coat protein sequence, suggesting a common origin. Biological assays with four recombinant isolates demonstrated their capacity to be aphid-transmitted to various Prunus hosts. One of these isolates had a threonine-to-isoleucine mutation in the conserved PTK motif of its HC-Pro and showed a drastically decreased, although not abolished, aphid transmissibility. The complete genome sequence of one of the recombinant isolates, BOR-3, was determined, as well as some partial sequences in the HC-Pro and P3 genes for additional natural recombinant isolates. Analysis of the phylogenetic relationships between the recombinant isolates and other sequenced PPV isolates confirmed that the recombinant isolates form a phylogenetically homogeneous lineage. In addition, this analysis revealed an ancient recombination event between the PPV-D and M subgroups, with a recombination breakpoint located in the P3 gene. Taken together, these results indicate that recombinant isolates represent an evolutionarily successful, homogeneous group of isolates with a common history and unique founding recombination event. The name PPV-Rec is proposed for this coherent ensemble of isolates.
Helper component proteinase (HC-Pro) of Plum pox virus is a multifunctional potyvirus protein that has been examined intensively. In addition to its involvement in aphid transmission, genome amplification and long-distance movement, it is also one of the better-studied plant virus suppressors of RNA silencing. The first systematic analysis using pentapeptide-insertion scanning mutagenesis of the silencing suppression function of a potyvirus HC-Pro is presented here. Sixty-three in-frame insertion mutants, each containing five extra amino acids inserted randomly within the HC-Pro protein, were analysed for their ability to suppress transgene-induced RNA silencing using Agrobacterium infiltration in transgenic Nicotiana benthamiana plants expressing green fluorescent protein. A functional map was obtained, consisting of clearly defined regions with different classes of silencing-suppression activity (wild-type, restricted and disabled). This map confirmed that the N-terminal part of the protein, which is indispensable for aphid transmission, is dispensable for silencing suppression and supports the involvement of the central region in silencing suppression, in addition to its role in maintenance of genome amplification and synergism with other viruses. Moreover, evidence is provided that the C-terminal part of the protein, previously known to be necessary mainly for proteolytic activity, also participates in silencing suppression. Pentapeptide-insertion scanning mutagenesis has been shown to be a fast and powerful tool to functionally characterize plant virus proteins.
The complete nucleotide sequence of plum pox virus (PPV) strain SK 68 was determined from a series of overlapping cDNA clones. The exact 5' terminus was determined by direct RNA sequencing. The RNA sequence was 9786 nucleotides in length, excluding a 3' terminal poly(A) sequence. The large open reading frame starts at nucleotide position 147 and is terminated at position 9568. Comparison of cistrons from other plum pox virus strains with those predicted for the SK 68 strain indicated the same genomic organizations. Comparison of sequences leads to the following conclusions: (1) The genetic organization of all four PPV strains is identical, containing one large polyprotein gene and two noncoding regions at the 5' and 3' ends; (2) pairwise comparison of the genomic sequence of PPV SK 68 with other PPV strains shows 11% alteration. Sequence differences among strains are spread in a uniform manner upon the genome, except for the P1, HC-pro, and two noncoding regions, which are more conserved (with a 4% and 6.6% change). The stability of the noncoding regions is probably linked to their role in replication. The sequence variation has little effect on the amino acid sequence of the corresponding polypeptides, as changes occur preferentially in the third position of the reading frame triplets, except in the case of the 5' end of the coat protein gene (2.7% average difference in amino acid level, while in the case of coat protein it is 7.7%).(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.