A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Natural recombinant Plum pox virus (PPV) isolates were detected in Albania, Bulgaria, Czech Republic, Germany, Hungary and Slovakia. Despite different geographical origins and dates of isolation, all the recombinant isolates were closely related at the molecular level and shared the same recombination breakpoint as well as a typical signature in their N-terminal coat protein sequence, suggesting a common origin. Biological assays with four recombinant isolates demonstrated their capacity to be aphid-transmitted to various Prunus hosts. One of these isolates had a threonine-to-isoleucine mutation in the conserved PTK motif of its HC-Pro and showed a drastically decreased, although not abolished, aphid transmissibility. The complete genome sequence of one of the recombinant isolates, BOR-3, was determined, as well as some partial sequences in the HC-Pro and P3 genes for additional natural recombinant isolates. Analysis of the phylogenetic relationships between the recombinant isolates and other sequenced PPV isolates confirmed that the recombinant isolates form a phylogenetically homogeneous lineage. In addition, this analysis revealed an ancient recombination event between the PPV-D and M subgroups, with a recombination breakpoint located in the P3 gene. Taken together, these results indicate that recombinant isolates represent an evolutionarily successful, homogeneous group of isolates with a common history and unique founding recombination event. The name PPV-Rec is proposed for this coherent ensemble of isolates.
Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.